- -

Sharp acoustic vortex focusing by Fresnel-spiral zone plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sharp acoustic vortex focusing by Fresnel-spiral zone plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.contributor.author Staliunas, Kestutis es_ES
dc.date.accessioned 2020-04-29T07:05:37Z
dc.date.available 2020-04-29T07:05:37Z
dc.date.issued 2018-05 es_ES
dc.identifier.issn 0003-6951 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141976
dc.description.abstract [EN] We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnelspiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through Project Nos. FIS2015-65998-C2-1 and FIS2015-65998-C2-2. N.J. acknowledges financial support from Generalitat Valenciana through Grant No. APOSTD-2017-042. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Sharp acoustic vortex focusing by Fresnel-spiral zone plates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5029424 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Jimenez, N.; Romero García, V.; García-Raffi, LM.; Camarena Femenia, F.; Staliunas, K. (2018). Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Applied Physics Letters. 112(20):204101-1-204101-5. https://doi.org/10.1063/1.5029424 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5029424 es_ES
dc.description.upvformatpinicio 204101-1 es_ES
dc.description.upvformatpfin 204101-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\362884 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references J. Nye and M. Berry ,Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(The Royal Society, 1974), Vol.336, pp. 165–190. es_ES
dc.description.references Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810-816. doi:10.1038/nature01935 es_ES
dc.description.references Volke-Sepúlveda, K., Santillán, A. O., & Boullosa, R. R. (2008). Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024302 es_ES
dc.description.references Anhäuser, A., Wunenburger, R., & Brasselet, E. (2012). Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer. Physical Review Letters, 109(3). doi:10.1103/physrevlett.109.034301 es_ES
dc.description.references Demore, C. E. M., Yang, Z., Volovick, A., Cochran, S., MacDonald, M. P., & Spalding, G. C. (2012). Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams. Physical Review Letters, 108(19). doi:10.1103/physrevlett.108.194301 es_ES
dc.description.references Hong, Z., Zhang, J., & Drinkwater, B. W. (2015). Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures. Physical Review Letters, 114(21). doi:10.1103/physrevlett.114.214301 es_ES
dc.description.references Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140-2143. doi:10.1121/1.400907 es_ES
dc.description.references Marzo, A., Ghobrial, A., Cox, L., Caleap, M., Croxford, A., & Drinkwater, B. W. (2017). Realization of compact tractor beams using acoustic delay-lines. Applied Physics Letters, 110(1), 014102. doi:10.1063/1.4972407 es_ES
dc.description.references Marzo, A., Caleap, M., & Drinkwater, B. W. (2018). Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles. Physical Review Letters, 120(4). doi:10.1103/physrevlett.120.044301 es_ES
dc.description.references Shi, C., Dubois, M., Wang, Y., & Zhang, X. (2017). High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences, 114(28), 7250-7253. doi:10.1073/pnas.1704450114 es_ES
dc.description.references Thomas, J.-L., & Marchiano, R. (2003). Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices. Physical Review Letters, 91(24). doi:10.1103/physrevlett.91.244302 es_ES
dc.description.references Marchiano, R., & Thomas, J.-L. (2005). Synthesis and analysis of linear and nonlinear acoustical vortices. Physical Review E, 71(6). doi:10.1103/physreve.71.066616 es_ES
dc.description.references Ealo, J. L., Prieto, J. C., & Seco, F. (2011). Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(8), 1651-1657. doi:10.1109/tuffc.2011.1992 es_ES
dc.description.references Gspan, S., Meyer, A., Bernet, S., & Ritsch-Marte, M. (2004). Optoacoustic generation of a helicoidal ultrasonic beam. The Journal of the Acoustical Society of America, 115(3), 1142-1146. doi:10.1121/1.1643367 es_ES
dc.description.references Hefner, B. T., & Marston, P. L. (1999). An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. The Journal of the Acoustical Society of America, 106(6), 3313-3316. doi:10.1121/1.428184 es_ES
dc.description.references Jiang, X., Li, Y., Liang, B., Cheng, J., & Zhang, L. (2016). Convert Acoustic Resonances to Orbital Angular Momentum. Physical Review Letters, 117(3). doi:10.1103/physrevlett.117.034301 es_ES
dc.description.references Ye, L., Qiu, C., Lu, J., Tang, K., Jia, H., Ke, M., … Liu, Z. (2016). Making sound vortices by metasurfaces. AIP Advances, 6(8), 085007. doi:10.1063/1.4961062 es_ES
dc.description.references Naify, C. J., Rohde, C. A., Martin, T. P., Nicholas, M., Guild, M. D., & Orris, G. J. (2016). Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters, 108(22), 223503. doi:10.1063/1.4953075 es_ES
dc.description.references Esfahlani, H., Lissek, H., & Mosig, J. R. (2017). Generation of acoustic helical wavefronts using metasurfaces. Physical Review B, 95(2). doi:10.1103/physrevb.95.024312 es_ES
dc.description.references Jiménez, N., Picó, R., Sánchez-Morcillo, V., Romero-García, V., García-Raffi, L. M., & Staliunas, K. (2016). Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E, 94(5). doi:10.1103/physreve.94.053004 es_ES
dc.description.references Wang, T., Ke, M., Li, W., Yang, Q., Qiu, C., & Liu, Z. (2016). Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 109(12), 123506. doi:10.1063/1.4963185 es_ES
dc.description.references Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F., & Volke-Sepúlveda, K. (2018). Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters, 112(8), 084101. doi:10.1063/1.5016864 es_ES
dc.description.references Jiang, X., Zhao, J., Liu, S., Liang, B., Zou, X., Yang, J., … Cheng, J. (2016). Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Applied Physics Letters, 108(20), 203501. doi:10.1063/1.4949337 es_ES
dc.description.references Jiménez, N., Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J., Garcia-Raffi, L. M., … Staliunas, K. (2014). Acoustic Bessel-like beam formation by an axisymmetric grating. EPL (Europhysics Letters), 106(2), 24005. doi:10.1209/0295-5075/106/24005 es_ES
dc.description.references Sanchis, L., Yánez, A., Galindo, P. L., Pizarro, J., & Pastor, J. M. (2010). Three-dimensional acoustic lenses with axial symmetry. Applied Physics Letters, 97(5), 054103. doi:10.1063/1.3474616 es_ES
dc.description.references Farnow, S. A., & Auld, B. A. (1974). Acoustic Fresnel zone plate transducers. Applied Physics Letters, 25(12), 681-682. doi:10.1063/1.1655359 es_ES
dc.description.references Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276 es_ES
dc.description.references Jiménez, N., Romero-García, V., Picó, R., Garcia-Raffi, L. M., & Staliunas, K. (2015). Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water. Applied Physics Letters, 107(20), 204103. doi:10.1063/1.4935917 es_ES
dc.description.references Cox, B. T., Kara, S., Arridge, S. R., & Beard, P. C. (2007). k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics. The Journal of the Acoustical Society of America, 121(6), 3453. doi:10.1121/1.2717409 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem