Abrahart, R.J., See, L. y Kneale, P.E., (1999). Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoÆ model. J. Hydroinformatics, 1(2), 103-114.
Abrahart, R.J. y See, L., (2000). Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process., 14, 2157-2172.
Abrahart, R.J. y See, L., (2002). Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci., 6(4), 655-670.
[+]
Abrahart, R.J., See, L. y Kneale, P.E., (1999). Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoÆ model. J. Hydroinformatics, 1(2), 103-114.
Abrahart, R.J. y See, L., (2000). Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process., 14, 2157-2172.
Abrahart, R.J. y See, L., (2002). Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci., 6(4), 655-670.
Al-Saba, T. y El-Amin, I., (1999). Artificial neural networks as applied to long-term demand forecasting. Artif. Intell. Eng., 13(2), 189-197.
Alvarez, J. y Bolado, S., (1996). Descripción de los procesos de infiltración mediante redes neuronales artificiales. Ing. Agua, 3(2), 39-46.
American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology, (2000a). Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng., 5(2), 115-123.
American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology, (2000b). Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng., 5(2), 124-137.
Anctil, F. y Rat, A., (2005). Evaluation of neural network streamflow forecasting on 47 watersheds. J. Hydrol. Eng., 10(1), 85-88.
Box, G.E.P. y Jenkins, G.M., (1976). Time series analysis: Forecasting and control, Holden-Day, Oakland, California.
Cameron, D., Kneale, P. y See, L., (2002). An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrol. Process., 16, 1033-1046.
Chang, F.-J. y Chen, Y.-C., (2001). A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245, 153-164.
Chiang, Y.-M., Chang, L.-C. y Chang, F.-J., (2004). Comparison of static-feedforward and dynamic-feedbackward neural networks for rainfall-runoff modeling. J. Hydrol., 290, 297-311.
De Vries, B. y Principe, J.C., (1991). A theory for neural networks with time delays, Advances in neural information processing systems 3, Morgan Kaufmann Publishers, California.
Duan, Q., Sorooshian, S. y Gupta, V.K., (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28(4), 1015-1031.
Duan, Q., Gupta, V.K. y Sorooshian, S., (1993). A shuffled complex evolution approach for effective and effcient global minimization. J. Optim. Theory Appl., 73(3), 501-521.
Duan, Q., Sorooshian, S. y Gupta, V.K., (1994). Optimal use of SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265-284.
French, M.N., Krajewski, W.F. y Cuykendall, R.R., (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol., 137, 1-31.
Griñó, R., (1992). Neural networks for univariate time series forecasting and their application to water demand prediction. Neural Network World, 2(5), 437-450.
Gutiérrez-Estrada, J.C., de Pedro-Sanz, E., López-Luque, R. y Pulido-Calvo, I., (2004). Comparison between traditional methods and artificial neural networks for ammonia concentration forescasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacult. Eng., 31, 183-203.
Gutiérrez-Estrada, J.C., de Pedro-Sanz, E., López-Luque, R. y Pulido-Calvo, I., (2005). Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático. Ing. Agua, 12(1), 77-92.
Hansen, J.V. y Nelson, R.D., (1997). Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Tran. Neural Networks, 8(4), 863-873.
Hsu, K., Gupta, H.V. y Sorooshian, S., (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 31(10), 2517-2530.
Jakeman, A.J. y Hornberger, G.M., (1993). How much complexity is warranted in a rainfall-runoff model? Water Resour. Res., 29(8), 2637-2649.
Kitanidis, P.K. y Bras, R.L., (1980). Real time forecasting with a conceptual hydrological model. 2: Applications and results. Water Resour. Res., 16(6), 1034-1044.
Kuligowski, R.J. y Barros, A.P., (1998). Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Wea. Rev., 126(2), 470-482.
Legates, D.R. y McCabe Jr, G.J., (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1), 233-241.
Lorrai, M. y Sechi, G.M., (1995). Neural nets for modelling rainfall-runoff transformations. Water Resour. Manage., 9, 299-313.
Martín-del-Brío, B. y Sanz-Molina, A., (2001). Redes neuronales y sistemas borrosos, RaMa, Madrid.
Mason, J.C., Tem'me, A. y Price, R.K., (1996). A neural network model of rainfall-runoff using radial basis functions. J. Recherches Hydrauliques, 34(4), 537-548.
Moradkhani, H., Hsu, K., Gupta, H.V. y Sorooshian, S., (2004). Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol., 295, 246-262.
Nash, J.E. y Sutcliffe, J.V., (1970). River flow forecasting through conceptual models. I: A discussion of principles. J. Hydrol., 10, 282-290.
Palazón, J. y García, A., (2004). Modelado de series climatológicas mediante una red neuronal artificial. Ing. Agua, 11(1), 41-52.
Park, H.-H., (1998). Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis. Fisheries Res., 38, 1-7.
Pérez-Marín, D., Garrido-Varo, A., Guerrero, J.E. y Gutiérrez-Estrada, J.C., (2006). Use of artificial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs. Appl. Spect., 60(9), 1062-1069.
Portela, M.M. y Quintela, A.C., (2000). A altura do escoamento anual médio numa bacia hidrográfica como parâmetro de regionalizaçao de informaçao hidrométrica (Mean annual flow height as a regionalization parameter of hydrologic information), 1 Congresso sobre Aproveitamentos e Gestao de Recursos Hídricos em Países de Idioma Português, Rio de Janeiro, Brasil, 218-227.
Portela, M.M. y Quintela, A.C., (2002a). Assessment of the streamflow characteristics under unavailability of discharge data: the mean annual flow depth over the watershed as a regionalization parameter. The Portuguese case, 2002, EGS Conference, Nice, Francia.
Portela, M.M. y Quintela, A.C., (2002b). Evaluation of the water resources in Portuguese watersheds without streamflow data. International Conference of Basin Organizations, Madrid, España.
Portela, M.M. y Quintela, A.C., (2005). Regionalization of hydrologic information: establishment of flow series at ungauged watersheds, Water Resources Management 2005, Third International Conference on Water Resources Management, Wessex Institute of Technology, UK, and University of Coimbra, Portugal.
Pulido-Calvo, I., Roldán, J., López-Luque, R. y Gutiérrez-Estrada, J.C., (2002). Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola. Ing. Agua, 9(3), 319-331.
Pulido-Calvo, I., Roldán, J., López-Luque, R. y Gutiérrez-Estrada, J.C. (2003) Demand forecasting for irrigation water distribution system. J. Irrig. Drain. Eng., 129(6), 422-431.
Pulido-Calvo, I., Montesinos, P., Roldán, J. y Ruiz-Navarro, F.J., (2005). Estimación de la demanda de agua para riego: Regresiones lineales versus aproximaciones neuronales. Avances en Recursos Hidráulicos, 12, 7-19.
Qi, M. y Zhang, G.P., (2001). An investigation of model selection criteria for neural network time series forecasting. Eur. J. of Oper. Res., 132, 666-680.
Roger, L.L. y Dowla, F.U., (1994). Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res., 30(2), 457-481.
Rumelhart, D.E., Hinton, G.E. y Williams, R.J., (1986). "Learningrepresentations by back-propagation errors. Nature, 323, 533-536.
See, L. y Openshaw, S., (2000). A hybrid multimodel approach to river level forecasting. Hydrol. Sci. J., 45(4), 523-536.
Shepherd, A.J., (1997). Second-Order Methods for Neural Networks, Springer, Nueva York.
Shin, H-S. y Salas, J.D., (2000). Regional drought analysis based on neural networks. J. Hydrol. Eng., 5(2), 145-155.
Sorooshian, S., Duan, Q. y Gupta, V.K., (1993). Calibration of rainfall-runoff models: Application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res., 29(4), 1185-1194.
Tan, Y. y van Cauwenberghe, A., (1999). Neural-network-based d-step-ahead predictors for nonlinear systems with time delay. Eng. Applic. Artif. Intell., 12(1), 21-25.
Thirumalaiah, K. y Deo, M.C., (1998). River stage forecasting using artificial neural networks. J. Hydrol. Eng., 3(1), 26-32.
Thirumalaiah, K. y Deo, M.C., (2000). Hydrological forecasting using neural networks. J. Hydrol. Eng., 5(2), 180-189.
Tokar, A.S. y Johnson, P.A., (1999). Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng., 4(3), 232-239.
Tokar, A.S. y Markus, M., (2000). Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng., 5(2), 156-161.
Tsoukalas, L.H. y Uhrig, R.E., (1997). Fuzzy and neural approaches in engineering, Wiley Interscience, Nueva York.
Ventura, S., Silva, M., Pérez-Bendito, D. y Hervás, C., (1995). Artificial neural networks for estimation of kinetic analytical parameters. Anal. Chem., 67(9), 1521-1525.
Wedding II, D.K. y Cios, K.J., (1996). Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing, 10, 149-168.
Wilson, J.H. y Keating, B., (1996). Business forecasting, Irwin, Londres.
Yang, C.C., Prasher, S.O., Lacroix, R., Sreekanth, S., Patni, N.K. y Masse, L., (1997). Artificial neural network model for subsurface-drained farmland. J. Irrig. Drain. Eng., 123(4), 285-292.
Yapo, P.O., Gupta, H.V. y Sorooshian, S., (1996). Automatic calibration of conceptual rainfall-runoÆ models: sensitivity to calibration data. J. Hydrol., 181, 23-48.
Zhang, G.P., (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
Zhang, M., Fulcher, J. y Scofield, R.A., (1997). Rainfall estimation using artificial neural network group. Neurocomputing, 16, 97-115.
Zhang, G.P., Patuwo, B.E. y Hu, M.Y., (2001). A simulation study of artificial neural networks for nonlinear time-series forecasting. Comp. Oper. Res., 28(4), 381-396.
[-]