Mostrar el registro sencillo del ítem
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Cano, Juan-Carlos | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.date.accessioned | 2020-05-05T06:18:44Z | |
dc.date.available | 2020-05-05T06:18:44Z | |
dc.date.issued | 2019-05-31 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142280 | |
dc.description.abstract | [EN] One of the main drawbacks of Global Navigation Satellite Sytems (GNSS) is that they do not work indoors. When inside, there is often no direct line from the satellite signals to the device and the ultra high frequency (UHF) used is blocked by thick, solid materials such as brick, metal, stone or wood. In this paper, we describe a solution based on the Long Range Wide Area Network (LoRaWAN) technology to geolocalise vehicles indoors. Through estimation of the behaviour of a LoRaWAN channel and using trilateration, the localisation of a vehicle can be obtained within a 20¿30 m range. Indoor geolocation for Intelligent Transporation Systems (ITS) can be used to locate vehicles of any type in underground parkings, keep a platoon of trucks in formation or create geo-fences, that is, sending an alert if an object moves outside a defined area, like a bicycle being stolen. Routing of heavy vehicles within an industrial setting is another possibility. | es_ES |
dc.description.sponsorship | This work was partially supported by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Future Internet | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | LoRaWAN | es_ES |
dc.subject | Geolocalization | es_ES |
dc.subject | ITS | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Indoor vehicles geolocalization using LoRaWAN | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/fi11060124 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Manzoni, P.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Hernández-Orallo, E. (2019). Indoor vehicles geolocalization using LoRaWAN. Future Internet. 11(6):1-15. https://doi.org/10.3390/fi11060124 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/fi11060124 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 1999-5903 | es_ES |
dc.relation.pasarela | S\388810 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Yasmin, R., Petajajarvi, J., Mikhaylov, K., & Pouttu, A. (2017). On the integration of LoRaWAN with the 5G test network. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). doi:10.1109/pimrc.2017.8292557 | es_ES |
dc.description.references | Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., & Lopez-Soler, J. M. (2018). Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Communications Magazine, 56(2), 60-67. doi:10.1109/mcom.2018.1700625 | es_ES |
dc.description.references | Li, Y., Han, S., Yang, L., Wang, F.-Y., & Zhang, H. (2018). LoRa on the Move: Performance Evaluation of LoRa in V2X Communications. 2018 IEEE Intelligent Vehicles Symposium (IV). doi:10.1109/ivs.2018.8500655 | es_ES |
dc.description.references | Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward Integrating Vehicular Clouds with IoT for Smart City Services. IEEE Network, 33(2), 65-71. doi:10.1109/mnet.2019.1800236 | es_ES |
dc.description.references | Sanchez-Iborra, R., Sanchez-Gomez, J., Santa, J., Fernandez, P. J., & Skarmeta, A. F. (2018). IPv6 communications over LoRa for future IoV services. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). doi:10.1109/wf-iot.2018.8355231 | es_ES |
dc.description.references | Santa, J., Sanchez-Iborra, R., Rodriguez-Rey, P., Bernal-Escobedo, L., & Skarmeta, A. (2019). LPWAN-Based Vehicular Monitoring Platform with a Generic IP Network Interface. Sensors, 19(2), 264. doi:10.3390/s19020264 | es_ES |
dc.description.references | Want, R., Wang, W., & Chesnutt, S. (2018). Accurate Indoor Location for the IoT. Computer, 51(8), 66-70. doi:10.1109/mc.2018.3191259 | es_ES |
dc.description.references | Zafari, F., Gkelias, A., & Leung, K. K. (2019). A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys & Tutorials, 21(3), 2568-2599. doi:10.1109/comst.2019.2911558 | es_ES |
dc.description.references | Feasibility of LoRa for Indoor Localizationhttps://pdfs.semanticscholar.org/ab00/c1eacbdd76732b7438ec8e5653f7c875def4.pdf | es_ES |
dc.description.references | Fargas, B. C., & Petersen, M. N. (2017). GPS-free geolocation using LoRa in low-power WANs. 2017 Global Internet of Things Summit (GIoTS). doi:10.1109/giots.2017.8016251 | es_ES |
dc.description.references | Sadowski, S., & Spachos, P. (2018). RSSI-Based Indoor Localization With the Internet of Things. IEEE Access, 6, 30149-30161. doi:10.1109/access.2018.2843325 | es_ES |
dc.description.references | Bakkali, W., Kieffer, M., Lalam, M., & Lestable, T. (2017). Kalman filter-based localization for Internet of Things LoRaWAN™ end points. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). doi:10.1109/pimrc.2017.8292242 | es_ES |
dc.description.references | Podevijn, N., Trogh, J., Karaagac, A., Haxhibeqiri, J., Hoebeke, J., Martens, L., … Joseph, W. (2018). TDoA-based outdoor positioning in a public LoRa network. 12th European Conference on Antennas and Propagation (EuCAP 2018). doi:10.1049/cp.2018.0574 | es_ES |
dc.description.references | Podevijn, N., Plets, D., Trogh, J., Karaagac, A., Haxhibcqiri, J., Hoebeke, J., … Joseph, W. (2018). Performance Comparison of RSS Algorithms for Indoor Localization in Large Open Environments. 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). doi:10.1109/ipin.2018.8533695 | es_ES |
dc.description.references | Gotthard, P., & Jankech, T. (2018). Low-Cost Car Park Localization Using RSSI in Supervised LoRa Mesh Networks. 2018 15th Workshop on Positioning, Navigation and Communications (WPNC). doi:10.1109/wpnc.2018.8555792 | es_ES |
dc.description.references | Wymeersch, H., Seco-Granados, G., Destino, G., Dardari, D., & Tufvesson, F. (2017). 5G mmWave Positioning for Vehicular Networks. IEEE Wireless Communications, 24(6), 80-86. doi:10.1109/mwc.2017.1600374 | es_ES |
dc.description.references | Yin, L., Ni, Q., & Deng, Z. (2018). A GNSS/5G Integrated Positioning Methodology in D2D Communication Networks. IEEE Journal on Selected Areas in Communications, 36(2), 351-362. doi:10.1109/jsac.2018.2804223 | es_ES |
dc.description.references | Cecchini, G., Bazzi, A., Masini, B. M., & Zanella, A. (2017). Localization-based resource selection schemes for network-controlled LTE-V2V. 2017 International Symposium on Wireless Communication Systems (ISWCS). doi:10.1109/iswcs.2017.8108147 | es_ES |
dc.description.references | Vatcharatiansakul, N., Tuwanut, P., & Pornavalai, C. (2017). Experimental performance evaluation of LoRaWAN: A case study in Bangkok. 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE). doi:10.1109/jcsse.2017.8025948 | es_ES |
dc.description.references | Radcliffe, P. J., Chavez, K. G., Beckett, P., Spangaro, J., & Jakob, C. (2017). Usability of LoRaWAN Technology in a Central Business District. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). doi:10.1109/vtcspring.2017.8108675 | es_ES |
dc.description.references | Boano, C. A., Cattani, M., & Römer, K. (2018). Impact of Temperature Variations on the Reliability of LoRa. Proceedings of the 7th International Conference on Sensor Networks. doi:10.5220/0006605600390050 | es_ES |
dc.description.references | Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the Limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34-40. doi:10.1109/mcom.2017.1600613 | es_ES |
dc.description.references | Loriot, M., Aljer, A., & Shahrour, I. (2017). Analysis of the use of LoRaWan technology in a large-scale smart city demonstrator. 2017 Sensors Networks Smart and Emerging Technologies (SENSET). doi:10.1109/senset.2017.8125011 | es_ES |
dc.description.references | Yasmin, R., Petajajarvi, J., Mikhaylov, K., & Pouttu, A. (2018). Large and Dense LoRaWAN Deployment to Monitor Real Estate Conditions and Utilization Rate. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). doi:10.1109/pimrc.2018.8580985 | es_ES |
dc.description.references | Augustin, A., Yi, J., Clausen, T., & Townsley, W. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(9), 1466. doi:10.3390/s16091466 | es_ES |