Mostrar el registro sencillo del ítem
dc.contributor.author | Kepler, Alexandre | es_ES |
dc.contributor.author | Cameira, Dídia I. | es_ES |
dc.contributor.author | Ribeiro, Luisa F. | es_ES |
dc.date.accessioned | 2020-05-05T16:30:55Z | |
dc.date.available | 2020-05-05T16:30:55Z | |
dc.date.issued | 2009-06-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/142406 | |
dc.description.abstract | [PT] A teoria clássica do golpe de aríete é usualmente utilizada para a modelaçao de sistemas de condutas em pressão e, tipicamente, considera que a atenuação de uma onda de pressão numa conduta forçada ocorre principalmente devido ao efeito do atrito calculado para condiçoes de escoamento permanente. No entanto, para a descrição do comportamento hidráulico de sistemas existentes, debe ser dada atenção especial aos diferentes efeitos dinâmicos relacionados com a dissipação de energia durante a ocurrência de transitórios hidráulicos. Além disso, a teoria clássica é consideravelmente imprecisa para condutas de plástico (como o polietileno e o policloreto de vinilo), as quais são caracterizadas por comportamento reológico viscoelástico. No presente trabalho, um simulador hidráulico, que incorpora os efeitos de factor de atrito variável e da viscoelasticidade do material da conduta, foi utilizado para análise de transitórios hidráulicos em um sistema experimental composto por condutas de policloreto de vinilo (PVC). Os resultados numéricos demonstraram que, quando apenas o factor de atrito variável é considerado nas simulações, a atenuação e a dispersão das ondas de pressão observadas não são reproduzidas a contento. A incorporação do comportamento viscoelástico do material da conducta resultou em bons ajustamentos dos valores simulados aos dados de pressão medidos numa instalação experimental. | es_ES |
dc.description.sponsorship | A Fundação de Amparo à Pesquisa do Estado `de São Paulo (FAPESP), pela bolsa de estudos de doutorado concedida ao primeiro autor, e à Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de estudos de estágio pós-doutoral no exterior concedida também ao primeiro autor. | es_ES |
dc.language | Portugués | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Estudo dos efeitos dinâmicos em condutas de PVC durante regimes tansitórios | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2009.2948 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kepler, A.; Cameira, DI.; Ribeiro, LF. (2009). Estudo dos efeitos dinâmicos em condutas de PVC durante regimes tansitórios. Ingeniería del agua. 16(2):95-114. https://doi.org/10.4995/ia.2009.2948 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2009.2948 | es_ES |
dc.description.upvformatpinicio | 95 | es_ES |
dc.description.upvformatpfin | 114 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\2948 | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.description.references | Aklonis, J.J. e MacKnight, W.J., (1983). Introduction to polymer viscoelasticity. John Wiley & Sons, 2nd Ed., New York. | es_ES |
dc.description.references | Almeida, A.B. e Koelle, E., (1992). Fluid transients in pipe networks. Computational Mechanics Publications, Glasgow. | es_ES |
dc.description.references | Brunone, B., Golia, U.M. e Greco, M., (1991). Modelling of fast transients by numerical methods. En Cabrera, E. e Fanelli, M. (eds.), Proceedings of the International Meeting on Hydraulic Transients and Water Column Separation, Valencia, Spain, pp. 273-280. | es_ES |
dc.description.references | Chaudhry, M.H., (1987). Applied hydraulic transients. Van Nostrand Reinhold Company, 2nd Ed., New York. | es_ES |
dc.description.references | Covas, D.I.C., (2003). Inverse transient analysis for leak detection and calibration of water pipe systems modelling special dynamic effects. PhD Thesis, Department of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, London, UK. | es_ES |
dc.description.references | Covas, D., Ramos, H. e Almeida, A.B., (2005a). Impulse response method for solving hydraulic transients in viscoelastic pipes. En XXXI IAHR Congress, Seoul, Korea, 12-18 Septiembre. | es_ES |
dc.description.references | Covas, D., Stoianov, I., Mano, J.F., Ramos, H., Graham, N. e Maksimovic, C., (2004a). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I -Experimental analysis and creep characterization. Journal of Hydraulic Research, 42(5), 516-530. | es_ES |
dc.description.references | Covas, D., Stoianov, I., Mano, J.F., Ramos, H., Graham, N. e Maksimovic, C., (2005b). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II -Model development, calibration and verification. Journal of Hydraulic Research, 43(1), 56-70. | es_ES |
dc.description.references | Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimovic, C. e Butler, D., (2004b). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. | es_ES |
dc.description.references | Ferry, J.D., (1970). Viscoelastic properties of polymers. Wiley-Interscience, Second Edition, John Wiley & Sons. | es_ES |
dc.description.references | Franke, G. e Seyler, F., (1983). Computation of unsteady pipe flow with respect to viscoelastic material properties. Journal of Hydraulic Research, IAHR, 21(5), 345-353. | es_ES |
dc.description.references | Gally, M., Guney, M. e Rieutord, E., (1979). An investigation of pressure transients in viscoelastic pipes. Journal of Fluids Engineering, Trans. ASME, 101, 495-499. | es_ES |
dc.description.references | Ghidaoui, M.S., Axworthy, D.H., Zhao, M. e McInnis, D.A., (2001). Closure to "Extended thermodynamics derivation of energy dissipation in unsteady pipe flow". Journal of Hydraulic Engineering, ASCE, 127(10), 888-890. | es_ES |
dc.description.references | Ghilardi, P. e Paoletti, A., (1986). Additional viscoelastic pipes as pressure surge suppressors. En Proceedings of 5th International Conference on Pressure Surges, Pub. BHR Group Ltd., Hannover, F.R. Germany, pp. 113-121. | es_ES |
dc.description.references | Guney, M., (1983). Waterhammer in viscoelastic pipes where cross-section parameters are time-Dependent. En Proceedings of the 4th International Conference on Pressure Surges, Pub. BHR Group, Bath, England, pp. 189-204. | es_ES |
dc.description.references | Karney, B.W., (1999). Water hammer in distribution network. En Savic, D.A. e Walters, G.A. (eds.), Water Industry Systems: Modelling and Optimization Applications, Vol. 1, pp. 33-38. | es_ES |
dc.description.references | MeiBner, E.; Franke, G. (1977). Influence of Pipe Material on the Dampening of Waterhammer. In: Proceedings of the 17th Congress of the International Association for Hydraulic Research, Pub. IAHR, Baden-Baden, F.R. Germany. | es_ES |
dc.description.references | Pezzinga, G., (2002). Unsteady flow in hydraulic networks with polymeric additional pipe. Journal of Hydraulic Engineering, ASCE, 128(2), 238-244. | es_ES |
dc.description.references | Rachid, F. B.F. e Stuckenbruck, S., (1990). Transients in liquid and structure in viscoelastic pipes. En Proceedings of the 6th International Conference on Pressure Surges, Pub. BHR Group Ltd, Cranfield, UK, 69-84. | es_ES |
dc.description.references | Rachid, F.B.F., Mattos, H.C. e Stuckenbruck, S., (1992). Water hammer in inelastic pipes: an approach via internal variable constitutive theory. En Proceedings of the International Conference on Unsteady Flow and Fluid Transients, Pub. Bettess & Watts (eds), Balkema, Rotterdam, the Netherlands, 63-70. | es_ES |
dc.description.references | Ramos, H., Borga, A., Covas, D.I.C. e Loureiro, D., (2004). Surge damping analysis in pipe systems: modelling and experiments. Journal of Hydraulic Research, IAHR, 42(4), 413-425. | es_ES |
dc.description.references | Rieutord, E. e Blanchard, A., (1979). Ecoulement non-permanent en conduite viscoelastique -Coup de Bélier. Journal of Hydraulic Research, IAHR, 17(1), 217-229. | es_ES |
dc.description.references | Rieutord, E., (1982). Transients response of fluid viscoelastic lines. Journal of Fluids Engineering, ASME, 104, 335-341. | es_ES |
dc.description.references | Sharp, B.B. e Theng, K.C., (1987). Water hammer attenuation in PVC pipe. En Conference on Hydraulics in Civil Engineering, Melbourne, 12-14 October 1987, pp. 132-136. | es_ES |
dc.description.references | Soares, A.K., (2007). Calibração e detecção de vazamentos em modelos de sistemas hidráulicos no escoamento transitório. Tese (Doutorado), 336 pp., Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, Brasil. | es_ES |
dc.description.references | Suo, L. e Wylie, E.B., (1990). Complex wave speed and hydraulic transients in viscoelastic pipes. Journal of Fluid Engineering, Trans. ASME, (112), 496-500. | es_ES |
dc.description.references | Vardy, A.E. e Brown, J.M., (1996). On turbulent, unsteady, smooth-pipe friction. En Proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, Harrogate, BHR Group, pp. 289-311. | es_ES |
dc.description.references | Vítkovsky, J.P., Bergant, A., Simpson, A. e Lambert, M.F., (2006). Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. Journal of Hydraulic Engineering, 132(7), 696-708. | es_ES |
dc.description.references | Vítkovsky, J.P., Lambert, M.F., Simpson, A.R. e Bergant, A., (2000). Advances in unsteady friction modelling in transient pipe flow. En Anderson, A. (ed.), VIII International Conference on Pressure Surges: Safe Design and Operation of Industrial Pipe Systems, The Hague, the Netherlands. BHR Group 2000 Pressure Surges, Publications n. 39, Vol. 1, 471-482. | es_ES |
dc.description.references | Williams, D.J., (1977). Waterhammer in non-rigid pipes: precursor waves and mechanical dampening. Journal of Mechanical Engineering, ASME, 19(6), 237-242. | es_ES |
dc.description.references | Wylie, E.B. e Streeter, V.L., (1993). Fluid transients in systems. Prentice-Hall, New Jersey. | es_ES |
dc.description.references | Zielke, W., (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 90(1), 109-115. | es_ES |