- -

A Tangible Educative 3D Printed Atlas of the Rat Brain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Tangible Educative 3D Printed Atlas of the Rat Brain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiñones, Darío R. es_ES
dc.contributor.author Ferragud-Agulló, Jorge es_ES
dc.contributor.author Pérez Feito, Ricardo es_ES
dc.contributor.author García Manrique, Juan Antonio es_ES
dc.contributor.author Canals-Gamoneda, Santiago es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2020-05-06T07:17:45Z
dc.date.available 2020-05-06T07:17:45Z
dc.date.issued 2018-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142512
dc.description.abstract [EN] In biology and neuroscience courses, brain anatomy is usually explained using Magnetic Resonance (MR) images or histological sections of different orientations. These can show the most important macroscopic areas in an animals¿ brain. However, this method is neither dynamic nor intuitive. In this work, an anatomical 3D printed rat brain with educative purposes is presented. Hand manipulation of the structure, facilitated by the scale up of its dimensions, and the ability to dismantle the ¿brain¿ into some of its constituent parts, facilitates the understanding of the 3D organization of the nervous system. This is an alternative method for teaching students in general and biologists in particular the rat brain anatomy. The 3D printed rat brain has been developed with eight parts, which correspond to the most important divisions of the brain. Each part has been fitted with interconnections, facilitating assembling and disassembling as required. These solid parts were smoothed out, modified and manufactured through 3D printing techniques with poly(lactic acid) (PLA). This work presents a methodology that could be expanded to almost any field of clinical and pre-clinical research, and moreover it avoids the need for dissecting animals to teach brain anatomy. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-2-R (D.M.) and BFU2015-64380-C2-1-R and EU Horizon 2020 Program 668863-SyBil-AA grant (S.C.). S.C. acknowledges financial support from the Spanish State Research Agency, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (ref. SEV-2013-0317). D.R.Q. was supported by grant "Ayudas para la formacion de personal investigador (FPI)" from the Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Brain es_ES
dc.subject Rapid prototyping es_ES
dc.subject Atlas es_ES
dc.subject Rat es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject Educative model es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Tangible Educative 3D Printed Atlas of the Rat Brain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma11091531 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Quiñones, DR.; Ferragud-Agulló, J.; Pérez Feito, R.; García Manrique, JA.; Canals-Gamoneda, S.; Moratal, D. (2018). A Tangible Educative 3D Printed Atlas of the Rat Brain. Materials. 11(9):1531-1542. https://doi.org/10.3390/ma11091531 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma11091531 es_ES
dc.description.upvformatpinicio 1531 es_ES
dc.description.upvformatpfin 1542 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 30149609 es_ES
dc.relation.pasarela S\367453 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Perrin, R. J., Fagan, A. M., & Holtzman, D. M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature, 461(7266), 916-922. doi:10.1038/nature08538 es_ES
dc.description.references Linden, D. E. J. (2012). The Challenges and Promise of Neuroimaging in Psychiatry. Neuron, 73(1), 8-22. doi:10.1016/j.neuron.2011.12.014 es_ES
dc.description.references Teipel, S., Drzezga, A., Grothe, M. J., Barthel, H., Chételat, G., Schuff, N., … Fellgiebel, A. (2015). Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. The Lancet Neurology, 14(10), 1037-1053. doi:10.1016/s1474-4422(15)00093-9 es_ES
dc.description.references Woo, C.-W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365-377. doi:10.1038/nn.4478 es_ES
dc.description.references Ivanov, I. (2017). The Neuroimaging Gap - Where do we go from Here? Acta Psychopathologica, 03(03). doi:10.4172/2469-6676.100090 es_ES
dc.description.references Kastrup, O., Wanke, I., & Maschke, M. (2005). Neuroimaging of infections. NeuroRX, 2(2), 324-332. doi:10.1602/neurorx.2.2.324 es_ES
dc.description.references Preece, D., Williams, S. B., Lam, R., & Weller, R. (2013). «Let»s Get Physical’: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical Sciences Education, 6(4), 216-224. doi:10.1002/ase.1345 es_ES
dc.description.references Zheng, Y., Yu, D., Zhao, J., Wu, Y., & Zheng, B. (2016). 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? Journal of Surgical Education, 73(3), 518-523. doi:10.1016/j.jsurg.2016.01.003 es_ES
dc.description.references Li, Z., Li, Z., Xu, R., Li, M., Li, J., Liu, Y., … Chen, Z. (2015). Three-dimensional printing models improve understanding of spinal fracture—A randomized controlled study in China. Scientific Reports, 5(1). doi:10.1038/srep11570 es_ES
dc.description.references Kettenbach, J., Wong, T., Kacher, D., Hata, N., Schwartz, R. ., Black, P. M., … Jolesz, F. . (1999). Computer-based imaging and interventional MRI: applications for neurosurgery. Computerized Medical Imaging and Graphics, 23(5), 245-258. doi:10.1016/s0895-6111(99)00022-1 es_ES
dc.description.references Schwarz, A. J., Danckaert, A., Reese, T., Gozzi, A., Paxinos, G., Watson, C., … Bifone, A. (2006). A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: Application to pharmacological MRI. NeuroImage, 32(2), 538-550. doi:10.1016/j.neuroimage.2006.04.214 es_ES
dc.description.references Marro, A., Bandukwala, T., & Mak, W. (2016). Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Current Problems in Diagnostic Radiology, 45(1), 2-9. doi:10.1067/j.cpradiol.2015.07.009 es_ES
dc.description.references Michalski, M. H., & Ross, J. S. (2014). The Shape of Things to Come. JAMA, 312(21), 2213. doi:10.1001/jama.2014.9542 es_ES
dc.description.references Ratto, M., & Ree, R. (2012). Materializing information: 3D printing and social change. First Monday, 17(7). doi:10.5210/fm.v17i7.3968 es_ES
dc.description.references Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H.-U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335-341. doi:10.1007/s11548-010-0476-x es_ES
dc.description.references Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., … McAlpine, M. C. (2013). 3D Printed Bionic Ears. Nano Letters, 13(6), 2634-2639. doi:10.1021/nl4007744 es_ES
dc.description.references Guy, J. R., Sati, P., Leibovitch, E., Jacobson, S., Silva, A. C., & Reich, D. S. (2016). Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets. Journal of Neuroscience Methods, 257, 55-63. doi:10.1016/j.jneumeth.2015.09.002 es_ES
dc.description.references Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2(4), 189-210. doi:10.1002/hbm.460020402 es_ES
dc.description.references Flandin, G., & Novak, M. J. U. (2013). fMRI Data Analysis Using SPM. fMRI, 51-76. doi:10.1007/978-3-642-34342-1_6 es_ES
dc.description.references Mueller, B. (2012). Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing. Assembly Automation, 32(2). doi:10.1108/aa.2012.03332baa.010 es_ES
dc.description.references Gulanová, J., Kister, I., Káčer, N., & Gulan, L. (2018). A Comparative Study of various AM Technologies Based on Their Accuracy. Procedia CIRP, 67, 238-243. doi:10.1016/j.procir.2017.12.206 es_ES
dc.description.references D’Urso, P. S., Barker, T. M., Earwaker, W. J., Bruce, L. J., Atkinson, R. L., Lanigan, M. W., … Effeney, D. J. (1999). Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. Journal of Cranio-Maxillofacial Surgery, 27(1), 30-37. doi:10.1016/s1010-5182(99)80007-9 es_ES
dc.description.references Müller, A., Krishnan, K. G., Uhl, E., & Mast, G. (2003). The Application of Rapid Prototyping Techniques in Cranial Reconstruction and Preoperative Planning in Neurosurgery. Journal of Craniofacial Surgery, 14(6), 899-914. doi:10.1097/00001665-200311000-00014 es_ES
dc.description.references Guarino, J., Tennyson, S., McCain, G., Bond, L., Shea, K., & King, H. (2007). Rapid Prototyping Technology for Surgeries of the Pediatric Spine and Pelvis. Journal of Pediatric Orthopaedics, 27(8), 955-960. doi:10.1097/bpo.0b013e3181594ced es_ES
dc.description.references Canstein, C., Cachot, P., Faust, A., Stalder, A. F., Bock, J., Frydrychowicz, A., … Markl, M. (2008). 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: Comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magnetic Resonance in Medicine, 59(3), 535-546. doi:10.1002/mrm.21331 es_ES
dc.description.references Giesel, F. L., Mehndiratta, A., von Tengg-Kobligk, H., Schaeffer, A., Teh, K., Hoffman, E. A., … Wild, J. M. (2009). Rapid Prototyping Raw Models on the Basis of High Resolution Computed Tomography Lung Data for Respiratory Flow Dynamics. Academic Radiology, 16(4), 495-498. doi:10.1016/j.acra.2008.10.008 es_ES
dc.description.references Malyala, S. K., Ravi Kumar, Y., & Rao, C. S. P. (2017). Organ Printing With Life Cells: A Review. Materials Today: Proceedings, 4(2), 1074-1083. doi:10.1016/j.matpr.2017.01.122 es_ES
dc.description.references Foster, K. R. (2016). 3-Dimensional Printing in Medicine: Hype, Hope, and the Challenge of Personalized Medicine. Philosophy and Engineering, 211-228. doi:10.1007/978-3-319-45193-0_16 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem