- -

Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernandez Cervantes, Daniel es_ES
dc.contributor.author Delgado Galván, Xitlali Virginia es_ES
dc.contributor.author Nava, Jose L. es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.contributor.author Rosales, Mario es_ES
dc.contributor.author Mora Rodríguez, José de Jesús es_ES
dc.date.accessioned 2020-05-06T07:18:11Z
dc.date.available 2020-05-06T07:18:11Z
dc.date.issued 2018-06 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142520
dc.description.abstract [EN] In Water Distribution Networks, the chlorine control is feasible with the use of water quality simulation codes. EPANET is a broad domain software and several commercial computer software packages base their models on its methodology. However, EPANET assumes that the solute mixing at cross-junctions is ¿complete and instantaneous¿. Several authors have questioned this model. In this paper, experimental tests are developed while using Copper Sulphate as tracer at different operating conditions, like those of real water distribution networks, in order to obtain the Residence Time Distribution and its behavior in the mixing as a novel analysis for the cross-junctions. Validation tests are developed in Computational Fluid Dynamics, following the k-# turbulence model. It is verified that the mixing phenomenon is dominated by convection, analyzing variation of Turbulent Schmidt Number vs. experimental tests. Having more accurate mixing models will improve the water quality simulations to have an appropriate control for chlorine and possible contaminants in water distribution networks. es_ES
dc.description.sponsorship To CONACYT for the Master and Ph.D. scholarships (417824 and 703220) to D.H.-C. and the Ph.D. scholarship (294038) to M.R.; To Universidad de Guanajuato for the financial support of the project No. 100/2018 of J.L.N.; To Engineering Division, Campus Guanajuato and Geomatics and Hydraulics Engineering Department for the financial support of this project; and finally, to SEP-PRODEP and UG for the financial support to publish this paper. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water distribution networks es_ES
dc.subject EPANET es_ES
dc.subject Safe water es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w10060733 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//417824/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//703220/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UG//100%2F2018/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Hernandez Cervantes, D.; Delgado Galván, XV.; Nava, JL.; López Jiménez, PA.; Rosales, M.; Mora Rodríguez, JDJ. (2018). Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions. Water. 10(6):1-18. https://doi.org/10.3390/w10060733 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w10060733 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\371583 es_ES
dc.contributor.funder Universidad de Guanajuato es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Dirección General de Educación Superior Tecnológica, México es_ES
dc.description.references Mercier Shanks, C., Sérodes, J.-B., & Rodriguez, M. J. (2013). Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network. Water Research, 47(9), 3231-3243. doi:10.1016/j.watres.2013.03.033 es_ES
dc.description.references Vasconcelos, J. J., Rossman, L. A., Grayman, W. M., Boulos, P. F., & Clark, R. M. (1997). Kinetics of chlorine decay. Journal - American Water Works Association, 89(7), 54-65. doi:10.1002/j.1551-8833.1997.tb08259.x es_ES
dc.description.references Ozdemir, O. N., & Ucak, A. (2002). Simulation of Chlorine Decay in Drinking-Water Distribution Systems. Journal of Environmental Engineering, 128(1), 31-39. doi:10.1061/(asce)0733-9372(2002)128:1(31) es_ES
dc.description.references Knobelsdorf Miranda, J., & Mujeriego Sahuquillo, R. (1997). Crecimiento bacteriano en las redes de distribución de agua potable: una revisión bibliográfica. Ingeniería del agua, 4(2). doi:10.4995/ia.1997.2719 es_ES
dc.description.references Wang, W., Ye, B., Yang, L., Li, Y., & Wang, Y. (2007). Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes. Environment International, 33(2), 219-225. doi:10.1016/j.envint.2006.09.009 es_ES
dc.description.references Parks, S. L. I., & VanBriesen, J. M. (2009). Booster Disinfection for Response to Contamination in a Drinking Water Distribution System. Journal of Water Resources Planning and Management, 135(6), 502-511. doi:10.1061/(asce)0733-9496(2009)135:6(502) es_ES
dc.description.references Hernández Cervantes, D., Mora Rodríguez, J., Delgado Galván, X., Ortiz Medel, J., & Jiménez Magaña, M. R. (2015). Optimal use of chlorine in water distribution networks based on specific locations of booster chlorination: analyzing conditions in Mexico. Water Supply, 16(2), 493-505. doi:10.2166/ws.2015.161 es_ES
dc.description.references Weickgenannt, M., Kapelan, Z., Blokker, M., & Savic, D. A. (2010). Risk-Based Sensor Placement for Contaminant Detection in Water Distribution Systems. Journal of Water Resources Planning and Management, 136(6), 629-636. doi:10.1061/(asce)wr.1943-5452.0000073 es_ES
dc.description.references Rathi, S., & Gupta, R. (2013). Monitoring stations in water distribution systems to detect contamination events. ISH Journal of Hydraulic Engineering, 20(2), 142-150. doi:10.1080/09715010.2013.857470 es_ES
dc.description.references Seth, A., Klise, K. A., Siirola, J. D., Haxton, T., & Laird, C. D. (2016). Testing Contamination Source Identification Methods for Water Distribution Networks. Journal of Water Resources Planning and Management, 142(4), 04016001. doi:10.1061/(asce)wr.1943-5452.0000619 es_ES
dc.description.references Xuesong, Y., Jie, S., & Chengyu, H. (2017). Research on contaminant sources identification of uncertainty water demand using genetic algorithm. Cluster Computing, 20(2), 1007-1016. doi:10.1007/s10586-017-0787-6 es_ES
dc.description.references Rathi, S., & Gupta, R. (2015). Optimal sensor locations for contamination detection in pressure-deficient water distribution networks using genetic algorithm. Urban Water Journal, 14(2), 160-172. doi:10.1080/1573062x.2015.1080736 es_ES
dc.description.references Sandoval, M. A., Fuentes, R., Walsh, F. C., Nava, J. L., & de León, C. P. (2016). Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells. Electrochimica Acta, 216, 490-498. doi:10.1016/j.electacta.2016.09.045 es_ES
dc.description.references Castañeda, L. (2017). Computational Fluid Dynamic Simulations of Single-Phase Flow in a Spacer-Filled Channel of a Filter-Press Electrolyzer. International Journal of Electrochemical Science, 7351-7364. doi:10.20964/2017.08.09 es_ES
dc.description.references Song, I., Romero-Gomez, P., & Choi, C. Y. (2009). Experimental Verification of Incomplete Solute Mixing in a Pressurized Pipe Network with Multiple Cross Junctions. Journal of Hydraulic Engineering, 135(11), 1005-1011. doi:10.1061/(asce)hy.1943-7900.0000095 es_ES
dc.description.references Romero-Gomez, P., Lansey, K. E., & Choi, C. Y. (2010). Impact of an incomplete solute mixing model on sensor network design. Journal of Hydroinformatics, 13(4), 642-651. doi:10.2166/hydro.2010.123 es_ES
dc.description.references Yu, T. C., Shao, Y., & Shen, C. (2014). Mixing at Cross Joints with Different Pipe Sizes in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(5), 658-665. doi:10.1061/(asce)wr.1943-5452.0000372 es_ES
dc.description.references Shao, Y., Jeffrey Yang, Y., Jiang, L., Yu, T., & Shen, C. (2014). Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions. Water Research, 56, 133-147. doi:10.1016/j.watres.2014.02.053 es_ES
dc.description.references Mompremier, R., Pelletier, G., Fuentes Mariles, Ó. A., & Ghebremichael, K. (2015). Impact of incomplete mixing in the prediction of chlorine residuals in municipal water distribution systems. Journal of Water Supply: Research and Technology - Aqua, 64(8), 904-914. doi:10.2166/aqua.2015.148 es_ES
dc.description.references McKenna, S. A., O’Hern, T., & Hartenberger, J. (2009). Detailed Investigation of Solute Mixing in Pipe Joints through High Speed Photography. Water Distribution Systems Analysis 2008. doi:10.1061/41024(340)88 es_ES
dc.description.references Ho, C. K., & O’Rear, L. (2009). Evaluation of solute mixing in water distribution pipe junctions. Journal - American Water Works Association, 101(9), 116-127. doi:10.1002/j.1551-8833.2009.tb09964.x es_ES
dc.description.references Choi, C. Y., Shen, J. Y., & Austin, R. G. (2009). Development of a Comprehensive Solute Mixing Model (AZRED) for Double-Tee, Cross, and Wye Junctions. Water Distribution Systems Analysis 2008. doi:10.1061/41024(340)89 es_ES
dc.description.references Rosales, M., Pérez, T., & Nava, J. L. (2016). Computational fluid dynamic simulations of turbulent flow in a rotating cylinder electrode reactor in continuous mode of operation. Electrochimica Acta, 194, 338-345. doi:10.1016/j.electacta.2016.02.076 es_ES
dc.description.references Moncho-Esteve, I. J., Palau-Salvador, G., Brevis, W., Vaas, M. O., & López-Jiménez, P. A. (2015). Numerical simulation of the hydrodynamics and turbulent mixing process in a drinking water storage tank. Journal of Hydraulic Research, 53(2), 207-217. doi:10.1080/00221686.2014.989456 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem