- -

Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources

Show simple item record

Files in this item

dc.contributor.author Taïbi, Khaled es_ES
dc.contributor.author Campo García, Antonio Dámaso Del es_ES
dc.contributor.author Vilagrosa, Alberto es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author López-Nicolás, José M. es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.date.accessioned 2020-05-06T07:18:26Z
dc.date.available 2020-05-06T07:18:26Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142522
dc.description.abstract [EN] BackgroundForest species ranges are confined by environmental limitations such as cold stress. The natural range shifts of pine forests due to climate change and proactive-assisted population migration may each be constrained by the ability of pine species to tolerate low temperatures, especially in northern latitudes or in high altitudes. The aim of this study is to characterize the response of cold-tolerant versus cold-sensitive Pinus halepensis (P. halepensis) seedlings at the physiological and the molecular level under controlled cold conditions to identify distinctive features which allow us to explain the phenotypic difference. With this objective gas-exchange and water potential was determined and the photosynthetic pigments, soluble sugars, glutathione and free amino acids content were measured in seedlings of different provenances under control and cold stress conditions.ResultsGlucose and fructose content can be highlighted as a potential distinctive trait for cold-tolerant P. halepensis seedlings. At the amino acid level, there was a significant increase and accumulation of glutathione, proline, glutamic acid, histidine, arginine and tryptophan along with a significant decrease of glycine.ConclusionOur results established that the main difference between cold-tolerant and cold-sensitive seedlings of P. halepensis is the ability to accumulate the antioxidant glutathione and osmolytes such as glucose and fructose, proline and arginine. es_ES
dc.description.sponsorship This study is a part of the research project: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting R&D of new multidisciplinary research lines. The authors are grateful to the Ministerio de Economia y Competitividad AGL2014-57431-P and BIO2016-77776-P. AV was supported by project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) by the Spanish Government and Prometeo program (DESESTRES Generalitat Valenciana). CEAM is funded by Generalitat Valenciana. None of the funding bodies was involved in the design of the study; collection, analysis, and interpretation of data; and in writing of the manuscript which were performed entirely by the signing authors. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation UPV/PAID-05-11 es_ES
dc.relation MINECO/AGL2014-57431-P es_ES
dc.relation MINECO/CGL2015-69773-C2-2-P es_ES
dc.relation FEDER/CGL2015-69773-C2-2-P es_ES
dc.relation GV/Prometeo es_ES
dc.relation AEI/BIO2016-77776-P es_ES
dc.relation GENERALITAT VALENCIANA/AICO/2018/300 es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pinus halepensis es_ES
dc.subject Climate change es_ES
dc.subject Cold stress es_ES
dc.subject Soluble sugars es_ES
dc.subject Osmolytes es_ES
dc.subject Antioxidants es_ES
dc.subject Glutathione es_ES
dc.subject Free amino acids es_ES
dc.subject Seed source evaluation es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-018-1464-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Taïbi, K.; Campo García, ADD.; Vilagrosa, A.; Belles Albert, JM.; López-Gresa, MP.; López-Nicolás, JM.; Mulet, JM. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology. 18:1-11. https://doi.org/10.1186/s12870-018-1464-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-018-1464-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.identifier.pmid 30326850 es_ES
dc.relation.pasarela S\370461 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references IPCC: Climate Change 2007. Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the IPCC (978 0521 88010–7 Hardback; 978 0521 70597–4 Paperback). es_ES
dc.relation.references Giorgi F, Lionello P. Climate change projections for the Mediterranean region. Glob Planet Change. 2008;63:90–104. es_ES
dc.relation.references Petoukhov V, Semenov VA. A link between reduced Barents-Kara Sea ice and cold winter extremes over northern continents. J Geophys Res. -Atmos. 2010;115:D21111. es_ES
dc.relation.references Kodra E, Steinhaeuser K, Ganguly AR. Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett. 2011;38:L08705. es_ES
dc.relation.references Kreyling J. Winter climate change: a critical factor for temperate vegetation performance. Ecology. 2010;91:1939–48. es_ES
dc.relation.references Yildiz D, Nzokou P, Deligoz A, Koc I, Genc M. Chemical and physiological responses of four Turkish red pine (Pinus brutia Ten.) provenances to cold temperature treatments. Eur J Forest Res. 2014;133:809. https://doi.org/10.1007/s10342-014-0798-2 . es_ES
dc.relation.references Bannister P, Neuner G. Frost resistance and the distribution of conifers. In: Bigras FJ, Colombo SJ, editors. Conifer Cold Hardiness. Tree Physiology, vol. 1. Dordrecht: Springer; 2001. p. 3–21. es_ES
dc.relation.references Thomashow MF. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Phys. 1999;50:571–99. es_ES
dc.relation.references Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C. Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Env Exp Bot. 2010;78:99–108. es_ES
dc.relation.references Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Phys. 2005;139:1304–12. https://doi.org/10.1104/pp.105.068510 . es_ES
dc.relation.references Colombo SJ, Zhao S, Blumwald E. Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand J For Res. 1995;10:32–6. es_ES
dc.relation.references Porcel R, Bustamante A, Ros R, Serrano R, Mulet JM. BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ. 2018:1–14. https://doi.org/10.1111/pce.13416 . es_ES
dc.relation.references Pardos M, Royo A, Gil L, Pardos JA. Effect of nursery location and outplanting date on field performance of Pinus halepensis and Quercus ilex seedlings. Forestry. 2003;76:67–81. es_ES
dc.relation.references Puértolas J, Gil L, Pardos JA. Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis mill .) seedlings assessed by chlorophyll fluorescence. Forestry. 2005;78:501–11. es_ES
dc.relation.references Taïbi K, del Campo AD, Mulet JM, Flors J, Aguado A. Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New For. 2014. https://doi.org/10.1007/s11056-014-9423-y . es_ES
dc.relation.references Taïbi K, del Campo AD, Aguado A, Mulet JM. The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecol Eng. 2015;84:218–28. https://doi.org/10.1016/j.ecoleng.2015.09.005 . es_ES
dc.relation.references Taïbi K, del Campo AD, Vilagrosa A, Bellés JM, López-Gresa MP, Pla D, Calvete JJ, López-Nicolás JM, Mulet JM. Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci. 2017;8:1202. https://doi.org/10.3389/fpls.2017.01202 . es_ES
dc.relation.references Baquedano FJ, Valladares F, Castillo FJ. Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur J Forest Res. 2008;127:495–506. es_ES
dc.relation.references Van den Ende W, Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot. 2009;60:9–18. es_ES
dc.relation.references Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–55. es_ES
dc.relation.references Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet. 2013;59:207. https://doi.org/10.1007/s00294-013-0401-2 . es_ES
dc.relation.references Van den Ende W. Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci. 2013;4:247. es_ES
dc.relation.references Cao YY, Yang MT, Li X, Zhou ZQ, Wang XJ, Bai JG. Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic. 2014;179:67–77. es_ES
dc.relation.references Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast. 2004;21(4):303–12. es_ES
dc.relation.references Pyngrope S, Bhoomika K, Dubey RS. Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 2013;250:585–600. es_ES
dc.relation.references Chen THH, Uemura M, Fujikawa S. Cold hardiness in plants: molecular genetics, cell biology, and physiology. Wallingford: CABI Publishing UK; 2006. es_ES
dc.relation.references Odlum K, Blake T, Kim Y, Glerum C. Influence of photoperiod and temperature on frost hardiness and free amino acid concentrations in black spruce seedlings. Tree Physiol. 1993;13:275–82. https://doi.org/10.1093/treephys/13.3.275 . es_ES
dc.relation.references Kim YT, Glerum C. Seasonal free amino-acid fluctuations in red pine and white spruce needles. Can J For Res. 1995;25:697–703. https://doi.org/10.1139/x95-077 . es_ES
dc.relation.references Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res. 2015;15:1–13. https://doi.org/10.1093/femsyr/fov008 . es_ES
dc.relation.references Angelcheva L, Mishra Y, Antti H, Kjellsen TD, Funk C, Strimbeck RG, et al. Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata). New Phytol. 2014;204:545–55. https://doi.org/10.1111/nph.12950 . es_ES
dc.relation.references Villar-Salvador P, Peñuelas Rubira JL, Vallas CJ. Dessication patterns of Pinus halepensis seedlings grown in different types of containers. Cuad Soc Esp Cien For. 2004;17:93–9. es_ES
dc.relation.references Hoagland DR, Arnon DI. The water-culture method for growing plants without soil, Vol. 347, 2nd Edn, Berkeley: University of California, College of Agriculture, Agricultural Experiment Station, 32; 1950. es_ES
dc.relation.references Maxwell K, Johnson GN. Chlorophyll fluorescence- a practical guide. J Exp Bot. 2008;51:659–68. es_ES
dc.relation.references Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 1987;148:350–82. es_ES
dc.relation.references Fayos J, Bellés JM, López-Gresa MP, Primo J, Conejero V. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry. 2006;67:142–8. es_ES


This item appears in the following Collection(s)

Show simple item record