- -

A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bangash, kifayatullah es_ES
dc.contributor.author Khan, Imran es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author León Fernández, Antonio es_ES
dc.date.accessioned 2020-05-07T05:56:54Z
dc.date.available 2020-05-07T05:56:54Z
dc.date.issued 2018-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142677
dc.description.abstract [EN] Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity. es_ES
dc.description.sponsorship This research was funded by Ministerio de Economia, Industria y Competitividad, Gobierno de Espana grant number BIA2017-87573-C2-2-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Massive MIMO es_ES
dc.subject Computational complexity es_ES
dc.subject Channel estimation es_ES
dc.subject Low-rank matrix completion es_ES
dc.subject Singular Value Decomposition es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics7100218 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87573-C2-2-P/ES/DESARROLLO Y APLICACION DE ENSAYOS NO DESTRUCTIVOS BASADOS EN ONDAS MECANICAS PARA LA EVALUACION Y MONITORIZACION DE REOLOGIA Y AUTOSANACION EN MATERIALES CEMENTANTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Bangash, K.; Khan, I.; Lloret, J.; León Fernández, A. (2018). A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems. Electronics. 7(10). https://doi.org/10.3390/electronics7100218 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics7100218 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\377136 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gao, Z., Dai, L., Lu, Z., Yuen, C., & Wang, Z. (2014). Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations. IEEE Communications Letters, 18(7), 1266-1269. doi:10.1109/lcomm.2014.2325027 es_ES
dc.description.references Biswas, S., Masouros, C., & Ratnarajah, T. (2016). Performance Analysis of Large Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays. IEEE Transactions on Wireless Communications, 15(5), 3492-3505. doi:10.1109/twc.2016.2522419 es_ES
dc.description.references Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092 es_ES
dc.description.references Khan, I., & Singh, D. (2018). Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU - International Journal of Electronics and Communications, 89, 181-190. doi:10.1016/j.aeue.2018.03.038 es_ES
dc.description.references Khan, I., Singh, M., & Singh, D. (2018). Compressive Sensing-based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8(5), 754. doi:10.3390/app8050754 es_ES
dc.description.references Arshad, M., Khan, I., Lloret, J., & Bosch, I. (2018). A Novel Multi-User Codebook Design for 5G in 3D-MIMO Heterogeneous Networks. Electronics, 7(8), 144. doi:10.3390/electronics7080144 es_ES
dc.description.references Shahjehan, W., Shah, S., Lloret, J., & Bosch, I. (2018). Joint Interference and Phase Alignment among Data Streams in Multicell MIMO Broadcasting. Applied Sciences, 8(8), 1237. doi:10.3390/app8081237 es_ES
dc.description.references Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Transactions on Wireless Communications, 10(8), 2640-2651. doi:10.1109/twc.2011.060711.101155 es_ES
dc.description.references Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. 2009 IEEE International Symposium on Information Theory. doi:10.1109/isit.2009.5205814 es_ES
dc.description.references Jose, J., Ashikhmin, A., Whiting, P., & Vishwanath, S. (2011). Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems. IEEE Transactions on Vehicular Technology, 60(5), 2102-2116. doi:10.1109/tvt.2011.2146797 es_ES
dc.description.references Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590-3600. doi:10.1109/twc.2010.092810.091092 es_ES
dc.description.references Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40-60. doi:10.1109/msp.2011.2178495 es_ES
dc.description.references Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. (2017). Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. IEEE Transactions on Green Communications and Networking, 1(2), 121-130. doi:10.1109/tgcn.2017.2696161 es_ES
dc.description.references Prasad, K. N. R. S. V., Hossain, E., & Bhargava, V. K. (2017). Energy Efficiency in Massive MIMO-Based 5G Networks: Opportunities and Challenges. IEEE Wireless Communications, 24(3), 86-94. doi:10.1109/mwc.2016.1500374wc es_ES
dc.description.references Fodor, G., Rajatheva, N., Zirwas, W., Thiele, L., Kurras, M., Guo, K., … De Carvalho, E. (2017). An Overview of Massive MIMO Technology Components in METIS. IEEE Communications Magazine, 55(6), 155-161. doi:10.1109/mcom.2017.1600802 es_ES
dc.description.references Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. doi:10.1109/jstsp.2014.2317671 es_ES
dc.description.references Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. doi:10.1109/mcom.2014.6736761 es_ES
dc.description.references Yi Xu, Guosen Yue, & Shiwen Mao. (2014). User Grouping for Massive MIMO in FDD Systems: New Design Methods and Analysis. IEEE Access, 2, 947-959. doi:10.1109/access.2014.2353297 es_ES
dc.description.references Duly, A. J., Kim, T., Love, D. J., & Krogmeier, J. V. (2014). Closed-Loop Beam Alignment for Massive MIMO Channel Estimation. IEEE Communications Letters, 18(8), 1439-1442. doi:10.1109/lcomm.2014.2316157 es_ES
dc.description.references Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802-814. doi:10.1109/jstsp.2014.2313020 es_ES
dc.description.references Noh, S., Zoltowski, M. D., & Love, D. J. (2016). Training Sequence Design for Feedback Assisted Hybrid Beamforming in Massive MIMO Systems. IEEE Transactions on Communications, 64(1), 187-200. doi:10.1109/tcomm.2015.2498184 es_ES
dc.description.references Jiang, Z., Molisch, A. F., Caire, G., & Niu, Z. (2015). Achievable Rates of FDD Massive MIMO Systems With Spatial Channel Correlation. IEEE Transactions on Wireless Communications, 14(5), 2868-2882. doi:10.1109/twc.2015.2396058 es_ES
dc.description.references Adhikary, A., Junyoung Nam, Jae-Young Ahn, & Caire, G. (2013). Joint Spatial Division and Multiplexing—The Large-Scale Array Regime. IEEE Transactions on Information Theory, 59(10), 6441-6463. doi:10.1109/tit.2013.2269476 es_ES
dc.description.references Talwar, S., Viberg, M., & Paulraj, A. (1996). Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms. IEEE Transactions on Signal Processing, 44(5), 1184-1197. doi:10.1109/78.502331 es_ES
dc.description.references Comon, P., & Golub, G. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327-1343. doi:10.1109/5.58320 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem