dc.contributor.author |
Vimos-Lojano, Diego
|
es_ES |
dc.contributor.author |
Martinez-Capel, Francisco
|
es_ES |
dc.contributor.author |
Hampel, Henrietta
|
es_ES |
dc.contributor.author |
Vázquez, Raúl F.
|
es_ES |
dc.date.accessioned |
2020-05-07T05:57:09Z |
|
dc.date.available |
2020-05-07T05:57:09Z |
|
dc.date.issued |
2019-01 |
es_ES |
dc.identifier.issn |
1936-0584 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/142681 |
|
dc.description.abstract |
[EN] This study assessed the effects of hydrological events on aquatic communities at the mesohabitat scale (pool, run, and riffle) in the high Andean region. Four headwater sites located in the Zhurucay microcatchment (southern Ecuador), with elevations higher than 3,500 m, were selected and monitored considering in each site a 50-m-long reach and within each reach five cross sections. In each of these reaches, 19 sampling campaigns were conducted in the period December 2011-October 2013, collecting macroinvertebrates and physical characteristics. A total of 27 hydrological indices were calculated using the daily flow rate as input. Large peak flow, small peak flow, and low flow (LF) events were defined based on discharge thresholds. Multivariate statistics showed that 14 hydrological indices were significantly related to the aquatic community. Further, the study revealed that (a) peak events produced stronger effects on communities than LF events, (b) the observed effects of LF events were weaker than those encountered in other latitudes, and (c) local benthic communities have more resilience than similar communities studied in other latitudes. |
es_ES |
dc.description.sponsorship |
The authors would like to express their gratitude to the research and technical staff of the Aquatic Ecology Laboratory (LEA) of the Universidad de Cuenca (UC, Ecuador) for assisting on the field data collection and posterior laboratory analyses and to project SENESCYT PIC-11-715 for providing some hydrological data. This study was performed in the scope of the research project SENESCYT PIC-11-726, directed and codirected, respectively, by the third and fourth authors, and financed by the Ecuadorian Secretary of Higher Education, Science, Technology and Innovation (SENESCYT), the National Electricity Corporation of Ecuador (CELEC EP-Hidropaute), and the Research Directory of the UC (DIUC). Further, financial support was provided by SENESCYT through a fellowship granted to the first author for carrying out his doctoral programme and through the PROMETEO fellowship awarded to the third author. The preparation of this manuscript is in line with the sabbatical leave programme of the fourth author and the development of the WATERMAS project cofunded by the Erasmus+ Programme of the European Union. The authors are grateful to Nuria Bonada and Jan Feyen for their helpful comments on the first draft of this manuscript. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
Ecohydrology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Andean streams |
es_ES |
dc.subject |
Ecohydrology |
es_ES |
dc.subject |
Ecological responses |
es_ES |
dc.subject |
Hydrological indices |
es_ES |
dc.subject |
Macroinvertebrates |
es_ES |
dc.subject |
Mesohabitat |
es_ES |
dc.subject.classification |
TECNOLOGIA DEL MEDIO AMBIENTE |
es_ES |
dc.title |
Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/eco.2033 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/SENESCYT//PIC-11-715/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/SENESCYT//PIC-11-726/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient |
es_ES |
dc.description.bibliographicCitation |
Vimos-Lojano, D.; Martinez-Capel, F.; Hampel, H.; Vázquez, RF. (2019). Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador. Ecohydrology. 12(1):1-17. https://doi.org/10.1002/eco.2033 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/eco.2033 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
17 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
12 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.relation.pasarela |
S\370189 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador |
es_ES |
dc.description.references |
Acosta, R., & Prat, N. (2010). Chironomid assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 177(1), 57-79. doi:10.1127/1863-9135/2010/0177-0057 |
es_ES |
dc.description.references |
Angradi, T. R. (1997). Hydrologic Context and Macroinvertebrate Community Response to Floods in an Appalachian Headwater Stream. American Midland Naturalist, 138(2), 371. doi:10.2307/2426829 |
es_ES |
dc.description.references |
Armanini, D. G., Idigoras Chaumel, A., Monk, W. A., Marty, J., Smokorowski, K., Power, M., & Baird, D. J. (2014). Benthic macroinvertebrate flow sensitivity as a tool to assess effects of hydropower related ramping activities in streams in Ontario (Canada). Ecological Indicators, 46, 466-476. doi:10.1016/j.ecolind.2014.07.018 |
es_ES |
dc.description.references |
Armstrong, J. ., Kemp, P. ., Kennedy, G. J. ., Ladle, M., & Milner, N. . (2003). Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research, 62(2), 143-170. doi:10.1016/s0165-7836(02)00160-1 |
es_ES |
dc.description.references |
Barbero, M. D., Oberto, A. M., & Gualdoni, C. M. (2013). Spatial and temporal patterns of macroinvertebrates in drift and on substrate of a mountain stream (Cordoba, Central Argentina). Acta Limnologica Brasiliensia, 25(4), 375-386. doi:10.1590/s2179-975x2013000400003 |
es_ES |
dc.description.references |
Belmar, O., Velasco, J., Gutiérrez-Cánovas, C., Mellado-Díaz, A., Millán, A., & Wood, P. J. (2012). The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 6(3), 363-379. doi:10.1002/eco.1274 |
es_ES |
dc.description.references |
Bispo, P. C., Oliveira, L. G., Bini, L. M., & Sousa, K. G. (2006). Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Brazilian Journal of Biology, 66(2b), 611-622. doi:10.1590/s1519-69842006000400005 |
es_ES |
dc.description.references |
Blanckaert, K., Garcia, X.-F., Ricardo, A.-M., Chen, Q., & Pusch, M. T. (2012). The role of turbulence in the hydraulic environment of benthic invertebrates. Ecohydrology, 6(4), 700-712. doi:10.1002/eco.1301 |
es_ES |
dc.description.references |
Bonada, N., Rieradevall, M., & Prat, N. (2007). Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589(1), 91-106. doi:10.1007/s10750-007-0723-5 |
es_ES |
dc.description.references |
Brewin, P. A., Buckton, S. T., & Ormerod, S. J. (2000). The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: do monsoon floods represent disturbance? Freshwater Biology, 44(4), 581-594. doi:10.1046/j.1365-2427.2000.00608.x |
es_ES |
dc.description.references |
BROOKS, A. J., HAEUSLER, T., REINFELDS, I., & WILLIAMS, S. (2005). Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology, 50(2), 331-344. doi:10.1111/j.1365-2427.2004.01322.x |
es_ES |
dc.description.references |
Brunke, M., Hoffmann, A., & Pusch, M. (2001). Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Regulated Rivers: Research & Management, 17(6), 667-676. doi:10.1002/rrr.626 |
es_ES |
dc.description.references |
Cristina Bruno, M., Maiolini, B., Carolli, M., & Silveri, L. (2010). Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy). Limnologica, 40(4), 281-290. doi:10.1016/j.limno.2009.11.012 |
es_ES |
dc.description.references |
Buytaert, W., Celleri, R., Willems, P., Bièvre, B. D., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3-4), 413-421. doi:10.1016/j.jhydrol.2006.02.031 |
es_ES |
dc.description.references |
Castro, D., Hughes, R., & Callisto, M. (2013). Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Brazilian Journal of Biology, 73(4), 775-782. doi:10.1590/s1519-69842013000400013 |
es_ES |
dc.description.references |
Chang, F.-J., Tsai, M.-J., Tsai, W.-P., & Herricks, E. E. (2008). Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology, 354(1-4), 75-89. doi:10.1016/j.jhydrol.2008.02.022 |
es_ES |
dc.description.references |
Cobb, D. G., Galloway, T. D., & Flannagan, J. F. (1992). Effects of Discharge and Substrate Stability on Density and Species Composition of Stream Insects. Canadian Journal of Fisheries and Aquatic Sciences, 49(9), 1788-1795. doi:10.1139/f92-198 |
es_ES |
dc.description.references |
Crespo, P., Feyen, J., Buytaert, W., Célleri, R., Frede, H.-G., Ramírez, M., & Breuer, L. (2012). Development of a conceptual model of the hydrologic response of tropical Andean micro-catchments in Southern Ecuador. Hydrology and Earth System Sciences Discussions, 9(2), 2475-2510. doi:10.5194/hessd-9-2475-2012 |
es_ES |
dc.description.references |
DATRY, T. (2011). Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshwater Biology, 57(3), 563-574. doi:10.1111/j.1365-2427.2011.02725.x |
es_ES |
dc.description.references |
Dekar, M. P., & Magoulick, D. D. (2007). Factors affecting fish assemblage structure during seasonal stream drying. Ecology of Freshwater Fish, 16(3), 335-342. doi:10.1111/j.1600-0633.2006.00226.x |
es_ES |
dc.description.references |
Dewson, Z. S., James, A. B. W., & Death, R. G. (2007). Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. Journal of the North American Benthological Society, 26(4), 754-766. doi:10.1899/07-003r.1 |
es_ES |
dc.description.references |
Durance, I., & Ormerod, S. J. (2010). Evidence for the role of climate in the local extinction of a cool-water triclad. Journal of the North American Benthological Society, 29(4), 1367-1378. doi:10.1899/09-159.1 |
es_ES |
dc.description.references |
FLECKER, A. S., & FEIFAREK, B. (1994). Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshwater Biology, 31(2), 131-142. doi:10.1111/j.1365-2427.1994.tb00847.x |
es_ES |
dc.description.references |
Freeman, M. C., Bowen, Z. H., Bovee, K. D., & Irwin, E. R. (2001). FLOW AND HABITAT EFFECTS ON JUVENILE FISH ABUNDANCE IN NATURAL AND ALTERED FLOW REGIMES. Ecological Applications, 11(1), 179-190. doi:10.1890/1051-0761(2001)011[0179:faheoj]2.0.co;2 |
es_ES |
dc.description.references |
García, A., Jorde, K., Habit, E., Caamaño, D., & Parra, O. (2011). Downstream environmental effects of dam operations: Changes in habitat quality for native fish species. River Research and Applications, 27(3), 312-327. doi:10.1002/rra.1358 |
es_ES |
dc.description.references |
Gibbins, C. N., Dilks, C. F., Malcolm, R., Soulsby, C., & Juggins, S. (2001). Hydrobiologia, 462(1/3), 205-219. doi:10.1023/a:1013102704693 |
es_ES |
dc.description.references |
Greenwood, M. J., & Booker, D. J. (2014). The influence of antecedent floods on aquatic invertebrate diversity, abundance and community composition. Ecohydrology, 8(2), 188-203. doi:10.1002/eco.1499 |
es_ES |
dc.description.references |
Hampel, H., Cocha, J., & Vimos, D. (2010). Incorporation of aquatic ecology to the hydrological investigation of ecosystems in the high Andes. MASKANA, 1(1), 91-100. doi:10.18537/mskn.01.01.07 |
es_ES |
dc.description.references |
Alomía Herrera, I., & Carrera Burneo, P. (2017). Environmental flow assessment in Andean rivers of Ecuador, case study: Chanlud and El Labrado dams in the Machángara River. Ecohydrology & Hydrobiology, 17(2), 103-112. doi:10.1016/j.ecohyd.2017.01.002 |
es_ES |
dc.description.references |
Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A., & Batzer, D. P. (2014). Macroinvertebrate Community Responses to Annual Flow Variation from River Regulation: An 11-Year Study. River Research and Applications, 31(7), 798-807. doi:10.1002/rra.2782 |
es_ES |
dc.description.references |
Jacobsen, D., & Encalada, A. (1998). The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Fundamental and Applied Limnology, 142(1), 53-70. doi:10.1127/archiv-hydrobiol/142/1998/53 |
es_ES |
dc.description.references |
Jowett, I. G. (1993). A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27(2), 241-248. doi:10.1080/00288330.1993.9516563 |
es_ES |
dc.description.references |
Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48(7), 1161-1172. doi:10.1046/j.1365-2427.2003.01086.x |
es_ES |
dc.description.references |
LAM, P. K. S., & CALOW, P. (1988). DIFFERENCES IN THE SHELL SHAPE OF LYMNAEA PEREGRA (MÜLLER) (GASTROPODA: PULMONATA) FROM LOTIC AND LENTIC HABITATS; ENVIRONMENTAL OR GENETIC VARIANCE? Journal of Molluscan Studies, 54(2), 197-207. doi:10.1093/mollus/54.2.197 |
es_ES |
dc.description.references |
Lamouroux, N., Dolédec, S., & Gayraud, S. (2004). Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23(3), 449-466. doi:10.1899/0887-3593(2004)023<0449:btosmc>2.0.co;2 |
es_ES |
dc.description.references |
Lancaster, J., & Hildrew, A. G. (1993). Flow Refugia and the Microdistribution of Lotic Macroinvertebrates. Journal of the North American Benthological Society, 12(4), 385-393. doi:10.2307/1467619 |
es_ES |
dc.description.references |
LEDGER, M. E., EDWARDS, F. K., BROWN, L. E., MILNER, A. M., & WOODWARD, G. (2011). Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biology, 17(7), 2288-2297. doi:10.1111/j.1365-2486.2011.02420.x |
es_ES |
dc.description.references |
Leigh, C. (2012). Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology. Hydrobiologia, 703(1), 95-112. doi:10.1007/s10750-012-1347-y |
es_ES |
dc.description.references |
Lima, A. C., Sayanda, D., Agostinho, C. S., Machado, A. L., Soares, A. M. V. M., & Monaghan, K. A. (2017). Using a trait-based approach to measure the impact of dam closure in fish communities of a Neotropical River. Ecology of Freshwater Fish, 27(1), 408-420. doi:10.1111/eff.12356 |
es_ES |
dc.description.references |
Macnaughton, C. J., McLaughlin, F., Bourque, G., Senay, C., Lanthier, G., Harvey-Lavoie, S., … Boisclair, D. (2015). The Effects of Regional Hydrologic Alteration on Fish Community Structure in Regulated Rivers. River Research and Applications, 33(2), 249-257. doi:10.1002/rra.2991 |
es_ES |
dc.description.references |
McElravy, E. P., & Resh, V. H. (1991). Distribution and seasonal occurrence of the hyporheic fauna in a northern California stream. Hydrobiologia, 220(3), 233-246. doi:10.1007/bf00006579 |
es_ES |
dc.description.references |
McIntosh, M. D., Benbow, M. E., & Burky, A. J. (2002). Effects of stream diversion on riffle macroinvertebrate communities in a Maui, Hawaii, stream. River Research and Applications, 18(6), 569-581. doi:10.1002/rra.694 |
es_ES |
dc.description.references |
Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia, 641(1), 85-95. doi:10.1007/s10750-009-0059-4 |
es_ES |
dc.description.references |
Mesa, L. M. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology, 55(3), 403-410. doi:10.1590/s1516-89132012000300011 |
es_ES |
dc.description.references |
Milhous , R. Bradley , J 1986 Physical habitat simulation and the moveable bed |
es_ES |
dc.description.references |
Milhous, R. T. (1998). Modelling of instream flow needs: the link between sediment and aquatic habitat. Regulated Rivers: Research & Management, 14(1), 79-94. doi:10.1002/(sici)1099-1646(199801/02)14:1<79::aid-rrr478>3.0.co;2-9 |
es_ES |
dc.description.references |
Miller, S. W., & Judson, S. (2014). Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Canadian Journal of Fisheries and Aquatic Sciences, 71(5), 675-687. doi:10.1139/cjfas-2013-0562 |
es_ES |
dc.description.references |
Laura Miserendino, M. (2009). Effects of flow regulation, basin characteristics and land-use on macroinvertebrate communities in a large arid Patagonian river. Biodiversity and Conservation, 18(7), 1921-1943. doi:10.1007/s10531-008-9565-3 |
es_ES |
dc.description.references |
Monk, W. A., Wood, P. J., Hannah, D. M., & Wilson, D. A. (2007). Selection of river flow indices for the assessment of hydroecological change. River Research and Applications, 23(1), 113-122. doi:10.1002/rra.964 |
es_ES |
dc.description.references |
Monk, W. A., Wood, P. J., Hannah, D. M., Wilson, D. A., Extence, C. A., & Chadd, R. P. (2006). Flow variability and macroinvertebrate community response within riverine systems. River Research and Applications, 22(5), 595-615. doi:10.1002/rra.933 |
es_ES |
dc.description.references |
Mosquera, G. M., Lazo, P. X., Célleri, R., Wilcox, B. P., & Crespo, P. (2015). Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA, 125, 120-128. doi:10.1016/j.catena.2014.10.010 |
es_ES |
dc.description.references |
MOUTHON, J., & DAUFRESNE, M. (2006). Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Global Change Biology, 12(3), 441-449. doi:10.1111/j.1365-2486.2006.01095.x |
es_ES |
dc.description.references |
Moya, N., François-Marie, G., Oberdorff, T., Rosales, C., & Domínguez, E. (2009). COMPARACIÓN DE LAS COMUNIDADES DE MACROINVERTEBRADOS ACUÁTICOS EN RÍOS INTERMITENTES Y PERMANENTES DEL ALTIPLANO BOLIVIANO: IMPLICACIONES PARA EL FUTURO CAMBIO CLIMÁTICO. Ecología Aplicada, 8(1-2), 105. doi:10.21704/rea.v8i1-2.387 |
es_ES |
dc.description.references |
Olsen, D. A., Hayes, J. W., Booker, D. J., & Barter, P. J. (2013). A MODEL INCORPORATING DISTURBANCE AND RECOVERY PROCESSES IN BENTHIC INVERTEBRATE HABITAT-FLOW TIME SERIES. River Research and Applications, 30(4), 413-426. doi:10.1002/rra.2649 |
es_ES |
dc.description.references |
III, J. P. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1), 119-131. doi:10.1214/aos/1176343003 |
es_ES |
dc.description.references |
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099 |
es_ES |
dc.description.references |
Ríos-Touma, B., Encalada, A. C., & Prat Fornells, N. (2011). Macroinvertebrate Assemblages of an Andean High-Altitude Tropical Stream: The Importance of Season and Flow. International Review of Hydrobiology, 96(6), 667-685. doi:10.1002/iroh.201111342 |
es_ES |
dc.description.references |
Ríos-Touma, B., Prat, N., & Encalada, A. (2012). Invertebrate drift and colonization processes in a tropical Andean stream. Aquatic Biology, 14(3), 233-246. doi:10.3354/ab00399 |
es_ES |
dc.description.references |
Rîşnoveanu, G., Chiriac, G., & Moldoveanu, M. (2017). Robustness of the biotic indicators used for classification of ecological status of lotic water bodies: A testing method when the data series are short. Ecological Indicators, 76, 170-177. doi:10.1016/j.ecolind.2016.11.044 |
es_ES |
dc.description.references |
Robinson, C. T. (2012). Long-term changes in community assembly, resistance, and resilience following experimental floods. Ecological Applications, 22(7), 1949-1961. doi:10.1890/11-1042.1 |
es_ES |
dc.description.references |
Rocha, L. G., Medeiros, E. S. F., & Andrade, H. T. A. (2012). Influence of flow variability on macroinvertebrate assemblages in an intermittent stream of semi-arid Brazil. Journal of Arid Environments, 85, 33-40. doi:10.1016/j.jaridenv.2012.04.001 |
es_ES |
dc.description.references |
Rolls, R. J., Leigh, C., & Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science, 31(4), 1163-1186. doi:10.1899/12-002.1 |
es_ES |
dc.description.references |
Snyder, C. D., & Johnson, Z. B. (2006). Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream. Journal of the North American Benthological Society, 25(4), 825-840. doi:10.1899/0887-3593(2006)025[0825:marfac]2.0.co;2 |
es_ES |
dc.description.references |
Stubbington, R., & Wood, P. J. (2013). Benthic and interstitial habitats of a lentic spring as invertebrate refuges during supra-seasonal drought. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 182(1), 61-73. doi:10.1127/1863-9135/2013/0409 |
es_ES |
dc.description.references |
Studholme, A. M., Hampel, H., Finn, D. S., & Vázquez, R. F. (2017). Secondary production of caddisflies reflects environmental heterogeneity among tropical Andean streams. Hydrobiologia, 797(1), 231-246. doi:10.1007/s10750-017-3183-6 |
es_ES |
dc.description.references |
Sueyoshi, M., Nakano, D., & Nakamura, F. (2013). The relative contributions of refugium types to the persistence of benthic invertebrates in a seasonal snowmelt flood. Freshwater Biology, 59(2), 257-271. doi:10.1111/fwb.12262 |
es_ES |
dc.description.references |
Suren, A., & Lambert, P. (2010). Temporal variation of invertebrate communities in perennial wetlands. New Zealand Journal of Marine and Freshwater Research, 44(4), 229-246. doi:10.1080/00288330.2010.509906 |
es_ES |
dc.description.references |
SUREN, A. M., & JOWETT, I. G. (2006). Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology, 51(12), 2207-2227. doi:10.1111/j.1365-2427.2006.01646.x |
es_ES |
dc.description.references |
Tomanová , S. 2007 Functional aspect of macroinvertebrate communities in tropical and temperate running waters |
es_ES |
dc.description.references |
Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 170(3), 243-255. doi:10.1127/1863-9135/2007/0170-0243 |
es_ES |
dc.description.references |
Townsend, C. R., & Hildrew, A. G. (1976). Field Experiments on the Drifting, Colonization and Continuous Redistribution of Stream Benthos. The Journal of Animal Ecology, 45(3), 759. doi:10.2307/3579 |
es_ES |
dc.description.references |
Urbanič, G. (2013). A Littoral Fauna Index for assessing the impact of lakeshore alterations in Alpine lakes. Ecohydrology, 7(2), 703-716. doi:10.1002/eco.1392 |
es_ES |
dc.description.references |
Vázquez, R. F., Beven, K., & Feyen, J. (2008). GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. Water Resources Management, 23(7), 1325-1349. doi:10.1007/s11269-008-9329-6 |
es_ES |
dc.description.references |
Vázquez, R. F. (2003). Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment. Journal of Hydrology, 270(3-4), 309-327. doi:10.1016/s0022-1694(02)00308-6 |
es_ES |
dc.description.references |
Vázquez, R. F., Willems, P., & Feyen, J. (2008). Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach. Hydrological Processes, 22(13), 2159-2179. doi:10.1002/hyp.6815 |
es_ES |
dc.description.references |
Vimos-Lojano, D. J., Martínez-Capel, F., & Hampel, H. (2017). Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador. Ecohydrology, 10(8), e1894. doi:10.1002/eco.1894 |
es_ES |
dc.description.references |
Wood, P. J., Agnew, M. D., & Petts, G. E. (2000). Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south-east England. Hydrological Processes, 14(16-17), 3133-3147. doi:10.1002/1099-1085(200011/12)14:16/17<3133::aid-hyp138>3.0.co;2-j |
es_ES |
dc.description.references |
Worrall, T. P., Dunbar, M. J., Extence, C. A., Laizé, C. L. R., Monk, W. A., & Wood, P. J. (2014). The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59(3-4), 645-658. doi:10.1080/02626667.2013.825722 |
es_ES |
dc.description.references |
Wyżga, B., Oglęcki, P., Radecki-Pawlik, A., Skalski, T., & Zawiejska, J. (2012). Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia, 696(1), 29-46. doi:10.1007/s10750-012-1180-3 |
es_ES |
dc.description.references |
Yulianti, J. S., & Burn, D. H. (1998). INVESTIGATING LINKS BETWEEN CLIMATIC WARMING AND LOW STREAMFLOW IN THE PRAIRIES REGION OF CANADA. Canadian Water Resources Journal, 23(1), 45-60. doi:10.4296/cwrj2301045 |
es_ES |