- -

Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vimos-Lojano, Diego es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Hampel, Henrietta es_ES
dc.contributor.author Vázquez, Raúl F. es_ES
dc.date.accessioned 2020-05-07T05:57:09Z
dc.date.available 2020-05-07T05:57:09Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 1936-0584 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142681
dc.description.abstract [EN] This study assessed the effects of hydrological events on aquatic communities at the mesohabitat scale (pool, run, and riffle) in the high Andean region. Four headwater sites located in the Zhurucay microcatchment (southern Ecuador), with elevations higher than 3,500 m, were selected and monitored considering in each site a 50-m-long reach and within each reach five cross sections. In each of these reaches, 19 sampling campaigns were conducted in the period December 2011-October 2013, collecting macroinvertebrates and physical characteristics. A total of 27 hydrological indices were calculated using the daily flow rate as input. Large peak flow, small peak flow, and low flow (LF) events were defined based on discharge thresholds. Multivariate statistics showed that 14 hydrological indices were significantly related to the aquatic community. Further, the study revealed that (a) peak events produced stronger effects on communities than LF events, (b) the observed effects of LF events were weaker than those encountered in other latitudes, and (c) local benthic communities have more resilience than similar communities studied in other latitudes. es_ES
dc.description.sponsorship The authors would like to express their gratitude to the research and technical staff of the Aquatic Ecology Laboratory (LEA) of the Universidad de Cuenca (UC, Ecuador) for assisting on the field data collection and posterior laboratory analyses and to project SENESCYT PIC-11-715 for providing some hydrological data. This study was performed in the scope of the research project SENESCYT PIC-11-726, directed and codirected, respectively, by the third and fourth authors, and financed by the Ecuadorian Secretary of Higher Education, Science, Technology and Innovation (SENESCYT), the National Electricity Corporation of Ecuador (CELEC EP-Hidropaute), and the Research Directory of the UC (DIUC). Further, financial support was provided by SENESCYT through a fellowship granted to the first author for carrying out his doctoral programme and through the PROMETEO fellowship awarded to the third author. The preparation of this manuscript is in line with the sabbatical leave programme of the fourth author and the development of the WATERMAS project cofunded by the Erasmus+ Programme of the European Union. The authors are grateful to Nuria Bonada and Jan Feyen for their helpful comments on the first draft of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Ecohydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Andean streams es_ES
dc.subject Ecohydrology es_ES
dc.subject Ecological responses es_ES
dc.subject Hydrological indices es_ES
dc.subject Macroinvertebrates es_ES
dc.subject Mesohabitat es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/eco.2033 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENESCYT//PIC-11-715/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENESCYT//PIC-11-726/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Vimos-Lojano, D.; Martinez-Capel, F.; Hampel, H.; Vázquez, RF. (2019). Hydrological influences on aquatic communities at the mesohabitat scale in high Andean streams of southern Ecuador. Ecohydrology. 12(1):1-17. https://doi.org/10.1002/eco.2033 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/eco.2033 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\370189 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Acosta, R., & Prat, N. (2010). Chironomid assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 177(1), 57-79. doi:10.1127/1863-9135/2010/0177-0057 es_ES
dc.description.references Angradi, T. R. (1997). Hydrologic Context and Macroinvertebrate Community Response to Floods in an Appalachian Headwater Stream. American Midland Naturalist, 138(2), 371. doi:10.2307/2426829 es_ES
dc.description.references Armanini, D. G., Idigoras Chaumel, A., Monk, W. A., Marty, J., Smokorowski, K., Power, M., & Baird, D. J. (2014). Benthic macroinvertebrate flow sensitivity as a tool to assess effects of hydropower related ramping activities in streams in Ontario (Canada). Ecological Indicators, 46, 466-476. doi:10.1016/j.ecolind.2014.07.018 es_ES
dc.description.references Armstrong, J. ., Kemp, P. ., Kennedy, G. J. ., Ladle, M., & Milner, N. . (2003). Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research, 62(2), 143-170. doi:10.1016/s0165-7836(02)00160-1 es_ES
dc.description.references Barbero, M. D., Oberto, A. M., & Gualdoni, C. M. (2013). Spatial and temporal patterns of macroinvertebrates in drift and on substrate of a mountain stream (Cordoba, Central Argentina). Acta Limnologica Brasiliensia, 25(4), 375-386. doi:10.1590/s2179-975x2013000400003 es_ES
dc.description.references Belmar, O., Velasco, J., Gutiérrez-Cánovas, C., Mellado-Díaz, A., Millán, A., & Wood, P. J. (2012). The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 6(3), 363-379. doi:10.1002/eco.1274 es_ES
dc.description.references Bispo, P. C., Oliveira, L. G., Bini, L. M., & Sousa, K. G. (2006). Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Brazilian Journal of Biology, 66(2b), 611-622. doi:10.1590/s1519-69842006000400005 es_ES
dc.description.references Blanckaert, K., Garcia, X.-F., Ricardo, A.-M., Chen, Q., & Pusch, M. T. (2012). The role of turbulence in the hydraulic environment of benthic invertebrates. Ecohydrology, 6(4), 700-712. doi:10.1002/eco.1301 es_ES
dc.description.references Bonada, N., Rieradevall, M., & Prat, N. (2007). Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589(1), 91-106. doi:10.1007/s10750-007-0723-5 es_ES
dc.description.references Brewin, P. A., Buckton, S. T., & Ormerod, S. J. (2000). The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: do monsoon floods represent disturbance? Freshwater Biology, 44(4), 581-594. doi:10.1046/j.1365-2427.2000.00608.x es_ES
dc.description.references BROOKS, A. J., HAEUSLER, T., REINFELDS, I., & WILLIAMS, S. (2005). Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology, 50(2), 331-344. doi:10.1111/j.1365-2427.2004.01322.x es_ES
dc.description.references Brunke, M., Hoffmann, A., & Pusch, M. (2001). Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Regulated Rivers: Research & Management, 17(6), 667-676. doi:10.1002/rrr.626 es_ES
dc.description.references Cristina Bruno, M., Maiolini, B., Carolli, M., & Silveri, L. (2010). Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy). Limnologica, 40(4), 281-290. doi:10.1016/j.limno.2009.11.012 es_ES
dc.description.references Buytaert, W., Celleri, R., Willems, P., Bièvre, B. D., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3-4), 413-421. doi:10.1016/j.jhydrol.2006.02.031 es_ES
dc.description.references Castro, D., Hughes, R., & Callisto, M. (2013). Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Brazilian Journal of Biology, 73(4), 775-782. doi:10.1590/s1519-69842013000400013 es_ES
dc.description.references Chang, F.-J., Tsai, M.-J., Tsai, W.-P., & Herricks, E. E. (2008). Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology, 354(1-4), 75-89. doi:10.1016/j.jhydrol.2008.02.022 es_ES
dc.description.references Cobb, D. G., Galloway, T. D., & Flannagan, J. F. (1992). Effects of Discharge and Substrate Stability on Density and Species Composition of Stream Insects. Canadian Journal of Fisheries and Aquatic Sciences, 49(9), 1788-1795. doi:10.1139/f92-198 es_ES
dc.description.references Crespo, P., Feyen, J., Buytaert, W., Célleri, R., Frede, H.-G., Ramírez, M., & Breuer, L. (2012). Development of a conceptual model of the hydrologic response of tropical Andean micro-catchments in Southern Ecuador. Hydrology and Earth System Sciences Discussions, 9(2), 2475-2510. doi:10.5194/hessd-9-2475-2012 es_ES
dc.description.references DATRY, T. (2011). Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshwater Biology, 57(3), 563-574. doi:10.1111/j.1365-2427.2011.02725.x es_ES
dc.description.references Dekar, M. P., & Magoulick, D. D. (2007). Factors affecting fish assemblage structure during seasonal stream drying. Ecology of Freshwater Fish, 16(3), 335-342. doi:10.1111/j.1600-0633.2006.00226.x es_ES
dc.description.references Dewson, Z. S., James, A. B. W., & Death, R. G. (2007). Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. Journal of the North American Benthological Society, 26(4), 754-766. doi:10.1899/07-003r.1 es_ES
dc.description.references Durance, I., & Ormerod, S. J. (2010). Evidence for the role of climate in the local extinction of a cool-water triclad. Journal of the North American Benthological Society, 29(4), 1367-1378. doi:10.1899/09-159.1 es_ES
dc.description.references FLECKER, A. S., & FEIFAREK, B. (1994). Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshwater Biology, 31(2), 131-142. doi:10.1111/j.1365-2427.1994.tb00847.x es_ES
dc.description.references Freeman, M. C., Bowen, Z. H., Bovee, K. D., & Irwin, E. R. (2001). FLOW AND HABITAT EFFECTS ON JUVENILE FISH ABUNDANCE IN NATURAL AND ALTERED FLOW REGIMES. Ecological Applications, 11(1), 179-190. doi:10.1890/1051-0761(2001)011[0179:faheoj]2.0.co;2 es_ES
dc.description.references García, A., Jorde, K., Habit, E., Caamaño, D., & Parra, O. (2011). Downstream environmental effects of dam operations: Changes in habitat quality for native fish species. River Research and Applications, 27(3), 312-327. doi:10.1002/rra.1358 es_ES
dc.description.references Gibbins, C. N., Dilks, C. F., Malcolm, R., Soulsby, C., & Juggins, S. (2001). Hydrobiologia, 462(1/3), 205-219. doi:10.1023/a:1013102704693 es_ES
dc.description.references Greenwood, M. J., & Booker, D. J. (2014). The influence of antecedent floods on aquatic invertebrate diversity, abundance and community composition. Ecohydrology, 8(2), 188-203. doi:10.1002/eco.1499 es_ES
dc.description.references Hampel, H., Cocha, J., & Vimos, D. (2010). Incorporation of aquatic ecology to the hydrological investigation of ecosystems in the high Andes. MASKANA, 1(1), 91-100. doi:10.18537/mskn.01.01.07 es_ES
dc.description.references Alomía Herrera, I., & Carrera Burneo, P. (2017). Environmental flow assessment in Andean rivers of Ecuador, case study: Chanlud and El Labrado dams in the Machángara River. Ecohydrology & Hydrobiology, 17(2), 103-112. doi:10.1016/j.ecohyd.2017.01.002 es_ES
dc.description.references Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A., & Batzer, D. P. (2014). Macroinvertebrate Community Responses to Annual Flow Variation from River Regulation: An 11-Year Study. River Research and Applications, 31(7), 798-807. doi:10.1002/rra.2782 es_ES
dc.description.references Jacobsen, D., & Encalada, A. (1998). The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Fundamental and Applied Limnology, 142(1), 53-70. doi:10.1127/archiv-hydrobiol/142/1998/53 es_ES
dc.description.references Jowett, I. G. (1993). A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27(2), 241-248. doi:10.1080/00288330.1993.9516563 es_ES
dc.description.references Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48(7), 1161-1172. doi:10.1046/j.1365-2427.2003.01086.x es_ES
dc.description.references LAM, P. K. S., & CALOW, P. (1988). DIFFERENCES IN THE SHELL SHAPE OF LYMNAEA PEREGRA (MÜLLER) (GASTROPODA: PULMONATA) FROM LOTIC AND LENTIC HABITATS; ENVIRONMENTAL OR GENETIC VARIANCE? Journal of Molluscan Studies, 54(2), 197-207. doi:10.1093/mollus/54.2.197 es_ES
dc.description.references Lamouroux, N., Dolédec, S., & Gayraud, S. (2004). Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23(3), 449-466. doi:10.1899/0887-3593(2004)023<0449:btosmc>2.0.co;2 es_ES
dc.description.references Lancaster, J., & Hildrew, A. G. (1993). Flow Refugia and the Microdistribution of Lotic Macroinvertebrates. Journal of the North American Benthological Society, 12(4), 385-393. doi:10.2307/1467619 es_ES
dc.description.references LEDGER, M. E., EDWARDS, F. K., BROWN, L. E., MILNER, A. M., & WOODWARD, G. (2011). Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biology, 17(7), 2288-2297. doi:10.1111/j.1365-2486.2011.02420.x es_ES
dc.description.references Leigh, C. (2012). Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology. Hydrobiologia, 703(1), 95-112. doi:10.1007/s10750-012-1347-y es_ES
dc.description.references Lima, A. C., Sayanda, D., Agostinho, C. S., Machado, A. L., Soares, A. M. V. M., & Monaghan, K. A. (2017). Using a trait-based approach to measure the impact of dam closure in fish communities of a Neotropical River. Ecology of Freshwater Fish, 27(1), 408-420. doi:10.1111/eff.12356 es_ES
dc.description.references Macnaughton, C. J., McLaughlin, F., Bourque, G., Senay, C., Lanthier, G., Harvey-Lavoie, S., … Boisclair, D. (2015). The Effects of Regional Hydrologic Alteration on Fish Community Structure in Regulated Rivers. River Research and Applications, 33(2), 249-257. doi:10.1002/rra.2991 es_ES
dc.description.references McElravy, E. P., & Resh, V. H. (1991). Distribution and seasonal occurrence of the hyporheic fauna in a northern California stream. Hydrobiologia, 220(3), 233-246. doi:10.1007/bf00006579 es_ES
dc.description.references McIntosh, M. D., Benbow, M. E., & Burky, A. J. (2002). Effects of stream diversion on riffle macroinvertebrate communities in a Maui, Hawaii, stream. River Research and Applications, 18(6), 569-581. doi:10.1002/rra.694 es_ES
dc.description.references Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia, 641(1), 85-95. doi:10.1007/s10750-009-0059-4 es_ES
dc.description.references Mesa, L. M. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology, 55(3), 403-410. doi:10.1590/s1516-89132012000300011 es_ES
dc.description.references Milhous , R. Bradley , J 1986 Physical habitat simulation and the moveable bed es_ES
dc.description.references Milhous, R. T. (1998). Modelling of instream flow needs: the link between sediment and aquatic habitat. Regulated Rivers: Research & Management, 14(1), 79-94. doi:10.1002/(sici)1099-1646(199801/02)14:1<79::aid-rrr478>3.0.co;2-9 es_ES
dc.description.references Miller, S. W., & Judson, S. (2014). Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Canadian Journal of Fisheries and Aquatic Sciences, 71(5), 675-687. doi:10.1139/cjfas-2013-0562 es_ES
dc.description.references Laura Miserendino, M. (2009). Effects of flow regulation, basin characteristics and land-use on macroinvertebrate communities in a large arid Patagonian river. Biodiversity and Conservation, 18(7), 1921-1943. doi:10.1007/s10531-008-9565-3 es_ES
dc.description.references Monk, W. A., Wood, P. J., Hannah, D. M., & Wilson, D. A. (2007). Selection of river flow indices for the assessment of hydroecological change. River Research and Applications, 23(1), 113-122. doi:10.1002/rra.964 es_ES
dc.description.references Monk, W. A., Wood, P. J., Hannah, D. M., Wilson, D. A., Extence, C. A., & Chadd, R. P. (2006). Flow variability and macroinvertebrate community response within riverine systems. River Research and Applications, 22(5), 595-615. doi:10.1002/rra.933 es_ES
dc.description.references Mosquera, G. M., Lazo, P. X., Célleri, R., Wilcox, B. P., & Crespo, P. (2015). Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA, 125, 120-128. doi:10.1016/j.catena.2014.10.010 es_ES
dc.description.references MOUTHON, J., & DAUFRESNE, M. (2006). Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Global Change Biology, 12(3), 441-449. doi:10.1111/j.1365-2486.2006.01095.x es_ES
dc.description.references Moya, N., François-Marie, G., Oberdorff, T., Rosales, C., & Domínguez, E. (2009). COMPARACIÓN DE LAS COMUNIDADES DE MACROINVERTEBRADOS ACUÁTICOS EN RÍOS INTERMITENTES Y PERMANENTES DEL ALTIPLANO BOLIVIANO: IMPLICACIONES PARA EL FUTURO CAMBIO CLIMÁTICO. Ecología Aplicada, 8(1-2), 105. doi:10.21704/rea.v8i1-2.387 es_ES
dc.description.references Olsen, D. A., Hayes, J. W., Booker, D. J., & Barter, P. J. (2013). A MODEL INCORPORATING DISTURBANCE AND RECOVERY PROCESSES IN BENTHIC INVERTEBRATE HABITAT-FLOW TIME SERIES. River Research and Applications, 30(4), 413-426. doi:10.1002/rra.2649 es_ES
dc.description.references III, J. P. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1), 119-131. doi:10.1214/aos/1176343003 es_ES
dc.description.references Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099 es_ES
dc.description.references Ríos-Touma, B., Encalada, A. C., & Prat Fornells, N. (2011). Macroinvertebrate Assemblages of an Andean High-Altitude Tropical Stream: The Importance of Season and Flow. International Review of Hydrobiology, 96(6), 667-685. doi:10.1002/iroh.201111342 es_ES
dc.description.references Ríos-Touma, B., Prat, N., & Encalada, A. (2012). Invertebrate drift and colonization processes in a tropical Andean stream. Aquatic Biology, 14(3), 233-246. doi:10.3354/ab00399 es_ES
dc.description.references Rîşnoveanu, G., Chiriac, G., & Moldoveanu, M. (2017). Robustness of the biotic indicators used for classification of ecological status of lotic water bodies: A testing method when the data series are short. Ecological Indicators, 76, 170-177. doi:10.1016/j.ecolind.2016.11.044 es_ES
dc.description.references Robinson, C. T. (2012). Long-term changes in community assembly, resistance, and resilience following experimental floods. Ecological Applications, 22(7), 1949-1961. doi:10.1890/11-1042.1 es_ES
dc.description.references Rocha, L. G., Medeiros, E. S. F., & Andrade, H. T. A. (2012). Influence of flow variability on macroinvertebrate assemblages in an intermittent stream of semi-arid Brazil. Journal of Arid Environments, 85, 33-40. doi:10.1016/j.jaridenv.2012.04.001 es_ES
dc.description.references Rolls, R. J., Leigh, C., & Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science, 31(4), 1163-1186. doi:10.1899/12-002.1 es_ES
dc.description.references Snyder, C. D., & Johnson, Z. B. (2006). Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream. Journal of the North American Benthological Society, 25(4), 825-840. doi:10.1899/0887-3593(2006)025[0825:marfac]2.0.co;2 es_ES
dc.description.references Stubbington, R., & Wood, P. J. (2013). Benthic and interstitial habitats of a lentic spring as invertebrate refuges during supra-seasonal drought. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 182(1), 61-73. doi:10.1127/1863-9135/2013/0409 es_ES
dc.description.references Studholme, A. M., Hampel, H., Finn, D. S., & Vázquez, R. F. (2017). Secondary production of caddisflies reflects environmental heterogeneity among tropical Andean streams. Hydrobiologia, 797(1), 231-246. doi:10.1007/s10750-017-3183-6 es_ES
dc.description.references Sueyoshi, M., Nakano, D., & Nakamura, F. (2013). The relative contributions of refugium types to the persistence of benthic invertebrates in a seasonal snowmelt flood. Freshwater Biology, 59(2), 257-271. doi:10.1111/fwb.12262 es_ES
dc.description.references Suren, A., & Lambert, P. (2010). Temporal variation of invertebrate communities in perennial wetlands. New Zealand Journal of Marine and Freshwater Research, 44(4), 229-246. doi:10.1080/00288330.2010.509906 es_ES
dc.description.references SUREN, A. M., & JOWETT, I. G. (2006). Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology, 51(12), 2207-2227. doi:10.1111/j.1365-2427.2006.01646.x es_ES
dc.description.references Tomanová , S. 2007 Functional aspect of macroinvertebrate communities in tropical and temperate running waters es_ES
dc.description.references Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 170(3), 243-255. doi:10.1127/1863-9135/2007/0170-0243 es_ES
dc.description.references Townsend, C. R., & Hildrew, A. G. (1976). Field Experiments on the Drifting, Colonization and Continuous Redistribution of Stream Benthos. The Journal of Animal Ecology, 45(3), 759. doi:10.2307/3579 es_ES
dc.description.references Urbanič, G. (2013). A Littoral Fauna Index for assessing the impact of lakeshore alterations in Alpine lakes. Ecohydrology, 7(2), 703-716. doi:10.1002/eco.1392 es_ES
dc.description.references Vázquez, R. F., Beven, K., & Feyen, J. (2008). GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. Water Resources Management, 23(7), 1325-1349. doi:10.1007/s11269-008-9329-6 es_ES
dc.description.references Vázquez, R. F. (2003). Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment. Journal of Hydrology, 270(3-4), 309-327. doi:10.1016/s0022-1694(02)00308-6 es_ES
dc.description.references Vázquez, R. F., Willems, P., & Feyen, J. (2008). Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach. Hydrological Processes, 22(13), 2159-2179. doi:10.1002/hyp.6815 es_ES
dc.description.references Vimos-Lojano, D. J., Martínez-Capel, F., & Hampel, H. (2017). Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador. Ecohydrology, 10(8), e1894. doi:10.1002/eco.1894 es_ES
dc.description.references Wood, P. J., Agnew, M. D., & Petts, G. E. (2000). Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south-east England. Hydrological Processes, 14(16-17), 3133-3147. doi:10.1002/1099-1085(200011/12)14:16/17<3133::aid-hyp138>3.0.co;2-j es_ES
dc.description.references Worrall, T. P., Dunbar, M. J., Extence, C. A., Laizé, C. L. R., Monk, W. A., & Wood, P. J. (2014). The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59(3-4), 645-658. doi:10.1080/02626667.2013.825722 es_ES
dc.description.references Wyżga, B., Oglęcki, P., Radecki-Pawlik, A., Skalski, T., & Zawiejska, J. (2012). Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia, 696(1), 29-46. doi:10.1007/s10750-012-1180-3 es_ES
dc.description.references Yulianti, J. S., & Burn, D. H. (1998). INVESTIGATING LINKS BETWEEN CLIMATIC WARMING AND LOW STREAMFLOW IN THE PRAIRIES REGION OF CANADA. Canadian Water Resources Journal, 23(1), 45-60. doi:10.4296/cwrj2301045 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem