- -

Stability analysis of Jacobian-free Newton's iterative method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability analysis of Jacobian-free Newton's iterative method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amiri, Abdolreza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Darvishi, M.T. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2020-05-09T03:00:54Z
dc.date.available 2020-05-09T03:00:54Z
dc.date.issued 2019-11-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142897
dc.description.abstract [EN] It is well known that scalar iterative methods with derivatives are highly more stable than their derivative-free partners, understanding the term stability as a measure of the wideness of the set of converging initial estimations. In multivariate case, multidimensional dynamical analysis allows us to afford this task and it is made on different Jacobian-free variants of Newton¿s method, whose estimations of the Jacobian matrix have increasing order. The respective basins of attraction and the number of fixed and critical points give us valuable information in this sense. es_ES
dc.description.sponsorship This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear system of equations es_ES
dc.subject Iterative method es_ES
dc.subject Jacobian-free scheme es_ES
dc.subject Basin of attraction es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stability analysis of Jacobian-free Newton's iterative method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a12110236 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Amiri, A.; Cordero Barbero, A.; Darvishi, M.; Torregrosa Sánchez, JR. (2019). Stability analysis of Jacobian-free Newton's iterative method. Algorithms. 12(11):1-16. https://doi.org/10.3390/a12110236 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/a12110236 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1999-4893 es_ES
dc.relation.pasarela S\399248 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005 es_ES
dc.description.references Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004 es_ES
dc.description.references Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences. Journal of Mathematical Chemistry, 57(5), 1344-1373. doi:10.1007/s10910-018-0971-9 es_ES
dc.description.references Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017 es_ES
dc.description.references Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039 es_ES
dc.description.references Cordero, A., Soleymani, F., & Torregrosa, J. R. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Applied Mathematics and Computation, 244, 398-412. doi:10.1016/j.amc.2014.07.010 es_ES
dc.description.references Cordero, A., Maimó, J. G., Torregrosa, J. R., & Vassileva, M. P. (2017). Multidimensional stability analysis of a family of biparametric iterative methods: CMMSE2016. Journal of Mathematical Chemistry, 55(7), 1461-1480. doi:10.1007/s10910-016-0724-6 es_ES
dc.description.references Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem