Mostrar el registro sencillo del ítem
dc.contributor.author | Amiri, Abdolreza | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Darvishi, M.T. | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2020-05-09T03:00:54Z | |
dc.date.available | 2020-05-09T03:00:54Z | |
dc.date.issued | 2019-11-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142897 | |
dc.description.abstract | [EN] It is well known that scalar iterative methods with derivatives are highly more stable than their derivative-free partners, understanding the term stability as a measure of the wideness of the set of converging initial estimations. In multivariate case, multidimensional dynamical analysis allows us to afford this task and it is made on different Jacobian-free variants of Newton¿s method, whose estimations of the Jacobian matrix have increasing order. The respective basins of attraction and the number of fixed and critical points give us valuable information in this sense. | es_ES |
dc.description.sponsorship | This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear system of equations | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Jacobian-free scheme | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability analysis of Jacobian-free Newton's iterative method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a12110236 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Amiri, A.; Cordero Barbero, A.; Darvishi, M.; Torregrosa Sánchez, JR. (2019). Stability analysis of Jacobian-free Newton's iterative method. Algorithms. 12(11):1-16. https://doi.org/10.3390/a12110236 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/a12110236 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1999-4893 | es_ES |
dc.relation.pasarela | S\399248 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005 | es_ES |
dc.description.references | Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004 | es_ES |
dc.description.references | Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences. Journal of Mathematical Chemistry, 57(5), 1344-1373. doi:10.1007/s10910-018-0971-9 | es_ES |
dc.description.references | Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017 | es_ES |
dc.description.references | Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039 | es_ES |
dc.description.references | Cordero, A., Soleymani, F., & Torregrosa, J. R. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Applied Mathematics and Computation, 244, 398-412. doi:10.1016/j.amc.2014.07.010 | es_ES |
dc.description.references | Cordero, A., Maimó, J. G., Torregrosa, J. R., & Vassileva, M. P. (2017). Multidimensional stability analysis of a family of biparametric iterative methods: CMMSE2016. Journal of Mathematical Chemistry, 55(7), 1461-1480. doi:10.1007/s10910-016-0724-6 | es_ES |
dc.description.references | Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 | es_ES |