Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández Martínez, Carlos Javier | es_ES |
dc.contributor.author | Gomis-Tena Dolz, Julio | es_ES |
dc.contributor.author | Hernández Ferrer, Alberto | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.date.accessioned | 2020-05-09T03:00:57Z | |
dc.date.available | 2020-05-09T03:00:57Z | |
dc.date.issued | 2019-06-21 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142899 | |
dc.description.abstract | [EN] Methane (CH4) is a natural by-product of microbial fermentation in the rumen and is a powerful greenhouse gas. An open-circuit indirect calorimetry system for continuous determination of CH4 and CO2 production and O-2 consumption and, thereafter, heat production (HP) calculation for small ruminants was described and validated. The system consisted of a computerized control, data acquisition and recording system for gases and air flux. The average value +/- standard deviation for the calibration factors in the system were 1.005 +/- 0.0007 (n = 6), 1.013 +/- 0.0012 (n = 6) and 0.988 +/- 0.0035 (n = 6) for O-2, CO2 and CH4, respectively. Calibration factors close to 1 confirmed the absence of leaks in the indirect calorimetry system. In addition, an experimental test with 8 goats at mid lactation was conducted to validate the system. The repeatability for CH4 and heat production measured with the open-circuit indirect calorimetry system was 79% and 61%, respectively. Daily average HP measured by indirect calorimetry (Respiration Quotient method) was close to the average HP determined from Carbon-Nitrogen balance (CN method), accounting for 685 and 667 kJ per kg metabolic body weight, respectively. Therefore, discrepancies averaged 1.92%, a rather satisfactory value considering the substantial amount of technical and analytical work involved. The close agreement found between both methods can be considered as being indicative of the absence of systematic error. Two diets with different forage were tested: 40% was either alfalfa hay (HAY) or alfalfa silage (SIL), and the proportion of concentrate was the same in both groups (60%). The experimental trial shown that HP and CH4 were higher in HAY than SIL diet (differences between treatments of 28 kJ of HP per kg of metabolic body weight and 7.1 L CH4/day were found). The data acquisition and recording device developed improved the accuracy of the indirect calorimetry system by reducing the work involved in managing output data and refining the functionality for measuring gas exchange and energy metabolism in small ruminants. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Animals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Goats | es_ES |
dc.subject | Indirect calorimetry | es_ES |
dc.subject | Data acquisition | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ani9060380 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Fernández Martínez, CJ.; Gomis-Tena Dolz, J.; Hernández Ferrer, A.; Saiz Rodríguez, FJ. (2019). An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants. Animals. 9(6):1-14. https://doi.org/10.3390/ani9060380 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ani9060380 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2076-2615 | es_ES |
dc.identifier.pmid | 31234275 | es_ES |
dc.identifier.pmcid | PMC6616995 | es_ES |
dc.relation.pasarela | S\399598 | es_ES |
dc.description.references | Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., … Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. doi:10.1111/gcb.14094 | es_ES |
dc.description.references | Dittmann, M. T., Runge, U., Lang, R. A., Moser, D., Galeffi, C., Kreuzer, M., & Clauss, M. (2014). Methane Emission by Camelids. PLoS ONE, 9(4), e94363. doi:10.1371/journal.pone.0094363 | es_ES |
dc.description.references | Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi:10.1079/bjn19650046 | es_ES |
dc.description.references | Fernández, C., López, M. C., & Lachica, M. (2012). Description and function of a mobile open-circuit respirometry system to measure gas exchange in small ruminants. Animal Feed Science and Technology, 172(3-4), 242-246. doi:10.1016/j.anifeedsci.2012.01.006 | es_ES |
dc.description.references | Takahashi, J., Chaudhry, A. ., Beneke, R. ., & Young, B. . (1999). An open-circuit hood system for gaseous exchange measurements in small ruminants. Small Ruminant Research, 32(1), 31-36. doi:10.1016/s0921-4488(98)00163-1 | es_ES |
dc.description.references | Brockway, J. M., Boyne, A. W., & Gordon, J. G. (1971). Simultaneous calibration of gas analyzers and meters. Journal of Applied Physiology, 31(2), 296-297. doi:10.1152/jappl.1971.31.2.296 | es_ES |
dc.description.references | Aguilera, J. F., & Prieto, C. (1986). Description and function of an open-circuit respiration plant for pigs and small ruminants and the techniques used to measure energy metabolism. Archiv für Tierernaehrung, 36(11), 1009-1018. doi:10.1080/17450398609429522 | es_ES |
dc.description.references | Robinson, D. L., Goopy, J. P., Donaldson, A. J., Woodgate, R. T., Oddy, V. H., & Hegarty, R. S. (2014). Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers. Animal, 8(12), 1935-1944. doi:10.1017/s1751731114001773 | es_ES |
dc.description.references | Robinson, D. L., Cameron, M., Donaldson, A. J., Dominik, S., & Oddy, V. H. (2016). One-hour portable chamber methane measurements are repeatable and provide useful information on feed intake and efficiency1. Journal of Animal Science, 94(10), 4376-4387. doi:10.2527/jas.2016-0620 | es_ES |
dc.description.references | Pinares-Patiño, C. S., Hickey, S. M., Young, E. A., Dodds, K. G., MacLean, S., Molano, G., … McEwan, J. C. (2013). Heritability estimates of methane emissions from sheep. animal, 7(s2), 316-321. doi:10.1017/s1751731113000864 | es_ES |
dc.description.references | Oddy, V. H., Donaldson, A. J., Cameron, M., Bond, J., Dominik, S., & Robinson, D. L. (2019). Variation in methane production over time and physiological state in sheep. Animal Production Science, 59(3), 441. doi:10.1071/an17447 | es_ES |
dc.description.references | Blaxter, K. L. (1967). Techniques in energy metabolism studies and their limitations. Proceedings of the Nutrition Society, 26(1), 86-96. doi:10.1079/pns19670016 | es_ES |
dc.description.references | Christensen, K., Chwalibog, A., Henckel, S., & Thorbek, G. (1988). Heat production in growing pigs calculated according to the RQ and CN methods. Comparative Biochemistry and Physiology Part A: Physiology, 91(3), 463-468. doi:10.1016/0300-9629(88)90619-6 | es_ES |
dc.description.references | Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038 | es_ES |
dc.description.references | Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi:10.2527/1995.7382483x | es_ES |
dc.description.references | Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315 | es_ES |
dc.description.references | Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4 | es_ES |
dc.description.references | Agnew, R. E., & Yan, T. (2000). Impact of recent research on energy feeding systems for dairy cattle. Livestock Production Science, 66(3), 197-215. doi:10.1016/s0301-6226(00)00161-5 | es_ES |
dc.description.references | Fernández, C., Martí, J. V., Pérez-Baena, I., Palomares, J. L., Ibáñez, C., & Segarra, J. V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. Journal of Animal Science, 96(4), 1508-1518. doi:10.1093/jas/sky028 | es_ES |
dc.description.references | Derno, M., Elsner, H.-G., Paetow, E.-A., Scholze, H., & Schweigel, M. (2009). Technical note: A new facility for continuous respiration measurements in lactating cows. Journal of Dairy Science, 92(6), 2804-2808. doi:10.3168/jds.2008-1839 | es_ES |