- -

An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Martínez, Carlos Javier es_ES
dc.contributor.author Gomis-Tena Dolz, Julio es_ES
dc.contributor.author Hernández Ferrer, Alberto es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.date.accessioned 2020-05-09T03:00:57Z
dc.date.available 2020-05-09T03:00:57Z
dc.date.issued 2019-06-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142899
dc.description.abstract [EN] Methane (CH4) is a natural by-product of microbial fermentation in the rumen and is a powerful greenhouse gas. An open-circuit indirect calorimetry system for continuous determination of CH4 and CO2 production and O-2 consumption and, thereafter, heat production (HP) calculation for small ruminants was described and validated. The system consisted of a computerized control, data acquisition and recording system for gases and air flux. The average value +/- standard deviation for the calibration factors in the system were 1.005 +/- 0.0007 (n = 6), 1.013 +/- 0.0012 (n = 6) and 0.988 +/- 0.0035 (n = 6) for O-2, CO2 and CH4, respectively. Calibration factors close to 1 confirmed the absence of leaks in the indirect calorimetry system. In addition, an experimental test with 8 goats at mid lactation was conducted to validate the system. The repeatability for CH4 and heat production measured with the open-circuit indirect calorimetry system was 79% and 61%, respectively. Daily average HP measured by indirect calorimetry (Respiration Quotient method) was close to the average HP determined from Carbon-Nitrogen balance (CN method), accounting for 685 and 667 kJ per kg metabolic body weight, respectively. Therefore, discrepancies averaged 1.92%, a rather satisfactory value considering the substantial amount of technical and analytical work involved. The close agreement found between both methods can be considered as being indicative of the absence of systematic error. Two diets with different forage were tested: 40% was either alfalfa hay (HAY) or alfalfa silage (SIL), and the proportion of concentrate was the same in both groups (60%). The experimental trial shown that HP and CH4 were higher in HAY than SIL diet (differences between treatments of 28 kJ of HP per kg of metabolic body weight and 7.1 L CH4/day were found). The data acquisition and recording device developed improved the accuracy of the indirect calorimetry system by reducing the work involved in managing output data and refining the functionality for measuring gas exchange and energy metabolism in small ruminants. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Goats es_ES
dc.subject Indirect calorimetry es_ES
dc.subject Data acquisition es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani9060380 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Fernández Martínez, CJ.; Gomis-Tena Dolz, J.; Hernández Ferrer, A.; Saiz Rodríguez, FJ. (2019). An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants. Animals. 9(6):1-14. https://doi.org/10.3390/ani9060380 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani9060380 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.identifier.pmid 31234275 es_ES
dc.identifier.pmcid PMC6616995 es_ES
dc.relation.pasarela S\399598 es_ES
dc.description.references Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., … Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. doi:10.1111/gcb.14094 es_ES
dc.description.references Dittmann, M. T., Runge, U., Lang, R. A., Moser, D., Galeffi, C., Kreuzer, M., & Clauss, M. (2014). Methane Emission by Camelids. PLoS ONE, 9(4), e94363. doi:10.1371/journal.pone.0094363 es_ES
dc.description.references Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi:10.1079/bjn19650046 es_ES
dc.description.references Fernández, C., López, M. C., & Lachica, M. (2012). Description and function of a mobile open-circuit respirometry system to measure gas exchange in small ruminants. Animal Feed Science and Technology, 172(3-4), 242-246. doi:10.1016/j.anifeedsci.2012.01.006 es_ES
dc.description.references Takahashi, J., Chaudhry, A. ., Beneke, R. ., & Young, B. . (1999). An open-circuit hood system for gaseous exchange measurements in small ruminants. Small Ruminant Research, 32(1), 31-36. doi:10.1016/s0921-4488(98)00163-1 es_ES
dc.description.references Brockway, J. M., Boyne, A. W., & Gordon, J. G. (1971). Simultaneous calibration of gas analyzers and meters. Journal of Applied Physiology, 31(2), 296-297. doi:10.1152/jappl.1971.31.2.296 es_ES
dc.description.references Aguilera, J. F., & Prieto, C. (1986). Description and function of an open-circuit respiration plant for pigs and small ruminants and the techniques used to measure energy metabolism. Archiv für Tierernaehrung, 36(11), 1009-1018. doi:10.1080/17450398609429522 es_ES
dc.description.references Robinson, D. L., Goopy, J. P., Donaldson, A. J., Woodgate, R. T., Oddy, V. H., & Hegarty, R. S. (2014). Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers. Animal, 8(12), 1935-1944. doi:10.1017/s1751731114001773 es_ES
dc.description.references Robinson, D. L., Cameron, M., Donaldson, A. J., Dominik, S., & Oddy, V. H. (2016). One-hour portable chamber methane measurements are repeatable and provide useful information on feed intake and efficiency1. Journal of Animal Science, 94(10), 4376-4387. doi:10.2527/jas.2016-0620 es_ES
dc.description.references Pinares-Patiño, C. S., Hickey, S. M., Young, E. A., Dodds, K. G., MacLean, S., Molano, G., … McEwan, J. C. (2013). Heritability estimates of methane emissions from sheep. animal, 7(s2), 316-321. doi:10.1017/s1751731113000864 es_ES
dc.description.references Oddy, V. H., Donaldson, A. J., Cameron, M., Bond, J., Dominik, S., & Robinson, D. L. (2019). Variation in methane production over time and physiological state in sheep. Animal Production Science, 59(3), 441. doi:10.1071/an17447 es_ES
dc.description.references Blaxter, K. L. (1967). Techniques in energy metabolism studies and their limitations. Proceedings of the Nutrition Society, 26(1), 86-96. doi:10.1079/pns19670016 es_ES
dc.description.references Christensen, K., Chwalibog, A., Henckel, S., & Thorbek, G. (1988). Heat production in growing pigs calculated according to the RQ and CN methods. Comparative Biochemistry and Physiology Part A: Physiology, 91(3), 463-468. doi:10.1016/0300-9629(88)90619-6 es_ES
dc.description.references Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038 es_ES
dc.description.references Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi:10.2527/1995.7382483x es_ES
dc.description.references Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315 es_ES
dc.description.references Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4 es_ES
dc.description.references Agnew, R. E., & Yan, T. (2000). Impact of recent research on energy feeding systems for dairy cattle. Livestock Production Science, 66(3), 197-215. doi:10.1016/s0301-6226(00)00161-5 es_ES
dc.description.references Fernández, C., Martí, J. V., Pérez-Baena, I., Palomares, J. L., Ibáñez, C., & Segarra, J. V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. Journal of Animal Science, 96(4), 1508-1518. doi:10.1093/jas/sky028 es_ES
dc.description.references Derno, M., Elsner, H.-G., Paetow, E.-A., Scholze, H., & Schweigel, M. (2009). Technical note: A new facility for continuous respiration measurements in lactating cows. Journal of Dairy Science, 92(6), 2804-2808. doi:10.3168/jds.2008-1839 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem