Abstract:
|
[EN] The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly signi¿cant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, ...[+]
[EN] The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly signi¿cant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, exploiting its complementing ¿eld of view, exposure, and lower energy threshold. Searches for an all-¿avor diffuse neutrino signal, covering nine years of ANTARES data taking, are presented in this Letter. Upward-going events are used to reduce the atmospheric muon background. This work includes for the ¿rst time in ANTARES both track-like (mainly nm) and shower-like (mainly ne) events in this kind of analysis. Track-like events allow for an increase of the effective volume of the detector thanks to the long path traveled by muons in rock and/or sea water. Shower-like events are well reconstructed only when the neutrino interaction vertex is close to, or inside, the instrumented volume. A mild excess of high-energy events over the expected background is observed in nine years of ANTARES data in both samples. The best ¿t for a single power-law cosmic neutrino spectrum, in terms of per-¿avor ¿ux at 100 TeV, is (1.7+-1.0)10-18 GeV¿1 cm¿2 s¿1 sr¿1 with spectral index G=2.4+0.5-0.4. The null cosmic ¿ux assumption is rejected with a signi¿cance of 1.6¿.
[-]
|
Thanks:
|
The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER ...[+]
The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.
[-]
|