Mostrar el registro sencillo del ítem
dc.contributor.author | Li, J. | es_ES |
dc.contributor.author | Chen, Y. | es_ES |
dc.contributor.author | Liu, M. | es_ES |
dc.contributor.author | Chen, Q. | es_ES |
dc.contributor.author | Zhou, J. | es_ES |
dc.contributor.author | Bao, G. | es_ES |
dc.contributor.author | Wu, X. | es_ES |
dc.date.accessioned | 2020-05-13T11:09:58Z | |
dc.date.available | 2020-05-13T11:09:58Z | |
dc.date.issued | 2020-03-31 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/143069 | |
dc.description.abstract | [EN] Rex rabbit, with multiple phenotypes and colourful fur, is an interesting model for assessing the effect of coat colour gene mutations on characteristic pigmentation phenotype. Based on previous study, the melanophilin (MLPH) gene is a positional candidate gene related coat colour dilution. The fur colours are a lighter shade, e.g. grey instead of black. We sequenced 1689 base pairs of the MLPH gene in Chinchilla and black Rex rabbit. A total of 13 polymorphisms were identified, including seven missense mutations. The rabbit MLPH gene has a very high GC content and the protein shows 64.87% identity to the orthologous human protein (lack of homologous amino acids encoded by human MLPH exon 9). Hardy-Weinberg test showed that, except for the g.606C>A single nucleotid polymorphism (SNP), all other SNPs were in Hardy-Weinberg equilibrium. Haplotype analysis revealed that the seven missense mutation SNPs of two strains of Rex rabbits formed 10 haplotypes, but there were only seven major types of haplotypes (haplotype frequency P>0.05). The major haplotypes of the Chinchilla and black Rex rabbits were H1/H2/H3/H4/H5 and H1/H2/H3/H6/H8, respectively. The special haplotypes of Chinchilla Rex rabbit (H4, H5, H7) were consistently associated with the Chinchilla phenotype. This study provides evidence that different coat colour formation may be caused by one or more mutations within MLPH gene in several Rex rabbit strains. The data on polymorphisms that are associated with the Chinchilla phenotype facilitate the breeding of rabbits with defined coat colours. | es_ES |
dc.description.sponsorship | This research was supported by the Modern Agricultural Industrial System Special Funding (CARS-43-A-1), the Science and Technology Major Project of New Variety Breeding (Livestock and Poultry) of Zhejiang Province, China (2016C02054-10), and National Natural Science Foundation of China (National Natural Science Foundation of China - Grant No. 31702081). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | World Rabbit Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MLPH | es_ES |
dc.subject | Rex rabbit | es_ES |
dc.subject | Polymorphism | es_ES |
dc.subject | Coat colour | es_ES |
dc.title | Association of Melanophilin (MLPH) gene polymorphism with coat colour in Rex rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/wrs.2020.12082 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Earmarked Fund for Modern Agro-industry Technology Research System//CARS-43-A-1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//31702081/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Li, J.; Chen, Y.; Liu, M.; Chen, Q.; Zhou, J.; Bao, G.; Wu, X. (2020). Association of Melanophilin (MLPH) gene polymorphism with coat colour in Rex rabbits. World Rabbit Science. 28(1):29-38. https://doi.org/10.4995/wrs.2020.12082 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2020.12082 | es_ES |
dc.description.upvformatpinicio | 29 | es_ES |
dc.description.upvformatpfin | 38 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-8886 | |
dc.relation.pasarela | OJS\12082 | es_ES |
dc.contributor.funder | Earmarked Fund for Modern Agro-industry Technology Research System, China | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.description.references | Ardlie K.G., Kruglyak L., Seielstad M. 2002. Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics, 3: 299-309. https://doi.org/10.1038/nrg777 | es_ES |
dc.description.references | Barral D.C., Seabra M.C. 2004. The Melanosome as a Model to Study Organelle Motility in Mammals. Pigment Cell Res., 17: 111-118. https://doi.org/10.1111/j.1600-0749.2004.00138.x | es_ES |
dc.description.references | Bauer A., Kehl A., Jagannathan V., Leeb T. 2018. A novel MLPH variant in dogs with coat colour dilution. Animal Genet., 49: 94-97. https://doi.org/10.1111/age.12632 | es_ES |
dc.description.references | Bennett D.C., Lamoreux M.L. 2003. The Colour Loci of Mice - A Genetic Century. Pigm. Cell Res., 16: 333-344. https://doi.org/10.1034/j.1600-0749.2003.00067.x | es_ES |
dc.description.references | Cao Q.J., Zhang N., Zhou R., Yao L.L., Li X.D. 2019. The cargo adaptor proteins RILPL2 and melanophilin co-regulate myosin-5a motor activity. J. Biol. Chem., 294: 11333-11341. https://doi.org/10.1074/jbc.RA119.007384 | es_ES |
dc.description.references | Choudhury B. 1987. Visual cortex in the albino rabbit. Exp.Brain Res., 66: 565-571. https://doi.org/10.1007/BF00270689 | es_ES |
dc.description.references | Cirera S., Markakis M.N., Christensen K., Anistoroaei R. 2013. New insights into the melanophilin (MLPH ) gene controlling coat colour phenotypes in American mink. Gene, 527: 48-54. https://doi.org/10.1016/j.gene.2013.05.047 | es_ES |
dc.description.references | Eiberg H., Mohr J. 1996. Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q. Eur. J. Human Gen., 4: 237-241. https://doi.org/10.1159/000472205 | es_ES |
dc.description.references | Fontanesi L., Scotti E., Allain D., Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Animal Genet., 45: 248-255. https://doi.org/10.1111/age.12104 | es_ES |
dc.description.references | Fontanesi L., Scotti E., Dall'Olio S., Oulmouden A., Russo V. 2012. Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit. World Rabbit Sci., 20: 35-41. https://doi.org/10.4995/wrs.2012.1033 | es_ES |
dc.description.references | Fukuda M., Kuroda T.S., Mikoshiba K. 2002. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va - Implications of a tripartite protein complex for melanosome transport. J. Biol. Chem., 277: 12432-12436. https://doi.org/10.1074/jbc.C200005200 | es_ES |
dc.description.references | Hume A.N., Tarafder A.K., Ramalho J.S., Sviderskaya E.V., Seabra M.C. 2006. A Coiled-Coil Domain of Melanophilin Is Essential for Myosin Va Recruitment and Melanosome Transport in Melanocytes. Mol. Biol. Cell, 17: 4720-4735. https://doi.org/10.1091/mbc.e06-05-0457 | es_ES |
dc.description.references | Ishida Y., David V.A., Eizirik E., Schäffer A.A., Neelam B.A., Roelke M.E., Hannah S.S., O'Brien S.J., Menotti-Raymond M. 2006. A homozygous single-base deletion in MLPH causes the dilute coat colour phenotype in the domestic cat. Genomics, 88: 698-705. https://doi.org/10.1016/j.ygeno.2006.06.006 | es_ES |
dc.description.references | Krawczak M., Reiss J., Cooper D.N. 1992. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet., 90: 41-54. https://doi.org/10.1007/BF00210743 | es_ES |
dc.description.references | Lehner S., Gähle M., Dierks C., Stelter R., Gerber J., Brehm R., Distl O. 2013. Two-Exon Skipping within MLPH Is Associated with Coat Colour Dilution in Rabbits. Plos One, 8: e84525. https://doi.org/10.1371/journal.pone.0084525 | es_ES |
dc.description.references | Li X.D., Ikebe R., Ikebe M. 2005. Activation of Myosin Va Function by Melanophilin, a Specific Docking Partner of Myosin Va. J. Biol. Chem., 280: 17815-17822. https://doi.org/10.1074/jbc.M413295200 | es_ES |
dc.description.references | Matesic L.E., Yip R., Reuss A.E., Swing D.A., O'Sullivan T.N., Fletcher C.F., Copeland N.G., Jenkins N.A. 2001. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. In Proc: National Academy of Sciences of the United States of America, 98: 10238-10243. https://doi.org/10.1073/pnas.181336698 | es_ES |
dc.description.references | Ménasché G., Chen H.H., Sanal O., Feldmann J., Basile G.D.S. 2003. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest., 112: 450-456. https://doi.org/10.1172/JCI200318264 | es_ES |
dc.description.references | Mengel-From J., Wong T.H., Morling N., Rees J.L., Jackson I.J. 2009. Genetic determinants of hair and eye colours in the Scottish and Danish populations. BMC Genet., 10: 88. https://doi.org/10.1186/1471-2156-10-88 | es_ES |
dc.description.references | Mercer J.A., Seperack P.K., Strobel M.C., Copeland N.G., Jenkins N.A. 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature, 349: 709-713. https://doi.org/10.1038/349709a0 | es_ES |
dc.description.references | Nagashima K., Torii S., Yi Z., Igarashi M., Okamoto K., Takeuchi T., Izumi T. 2002. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett., 517: 0-238. https://doi.org/10.1016/S0014-5793(02)02634-0 | es_ES |
dc.description.references | Philipp U., Hamann H., Mecklenburg L., Nishino S., Mignot E., Günzelapel A.R., Schmutz S.M., Leeb T. 2005. Polymorphisms within the canine MLPH gene are associated with dilute coat colour in dogs. BMC Genet., 6: 34. https://doi.org/10.1186/1471-2156-6-34 | es_ES |
dc.description.references | Reed R. 1989. The organization of 3' splice-site sequences in mammalian introns. Gene. Dev., 3: 2113-2123. https://doi.org/10.1101/gad.3.12b.2113 | es_ES |
dc.description.references | Roscigno R.F., Weiner M., Garcia-Blanco M.A. 1993. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J. Biol. Chem., 268: 11222-11229. | es_ES |
dc.description.references | Sckolnick M., Krementsova E.B., Warshaw D.M., Trybus K.M. 2013. More Than Just a Cargo Adapter, Melanophilin Prolongs and Slows Processive Runs of Myosin Va. J. Biol. Chem., 288: 29313-29322. https://doi.org/10.1074/jbc.M113.476929 | es_ES |
dc.description.references | Shifman S., Kuypers J., Kokoris M., Yakir B., Darvasi A. 2003. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet., 12: 771-776. https://doi.org/10.1093/hmg/ddg088 | es_ES |
dc.description.references | Strom, M. 2002. A Family of Rab27-binding Proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem., 277: 25423-25430. https://doi.org/10.1074/jbc.M202574200 | es_ES |
dc.description.references | Wilson S.M., Yip R., Swing D.A., O'Sullivan T.N., Zhang Y., Novak E.K., Swank R.T., Russell L.B., Copeland N.G., Jenkinks N.A. 2000. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. In Proc.: National Academy of Sciences of the United States of America, 97: 7933-7938. https://doi.org/10.1073/pnas.140212797 | es_ES |
dc.description.references | Wu X.S., Rao K., Zhang H., Wang F., Sellers J.R., Matesic L.E., Copeland N.G., Jenkins N.A., Hammer J.A. 2002. Identification of an organelle receptor for myosin-Va. Nature Cell Biol., 4: 271-278. https://doi.org/10.1038/ncb760 | es_ES |