- -

Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Magariño, Iván es_ES
dc.contributor.author Gray, Geraldine es_ES
dc.contributor.author Lacuesta Gilabert, Raquel es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2020-05-14T03:03:45Z
dc.date.available 2020-05-14T03:03:45Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143116
dc.description.abstract [EN] Emerging wireless networks have brought Internet and communications to more users and areas. Some of the most relevant emerging wireless technologies are Worldwide Interoperability for Microwave Access, Long-Term Evolution Advanced, and ad hoc and mesh networks. An open challenge is to ensure the reliability and robustness of these networks when individual components fail. The survivability and performance of these networks can be especially relevant when emergencies arise in rural areas, for example supporting communications during a medical emergency. This can be done by anticipating failures and finding alternative solutions. This paper proposes using big data analytics techniques, such as decision trees for detecting nodes that are likely to fail, and so avoid them when routing traffic. This can improve the survivability and performance of networks. The current approach is illustrated with an agent based simulator of wireless networks developed with NetLogo and data mining processes designed with RapidMiner. According to the simulated experimentation, the current approach reduced the communication failures by 51.6% when incorporating rule induction for predicting the most reliable routes. es_ES
dc.description.sponsorship This work was supported in part by the research project Construccion de un framework para agilizar el desarrollo de aplicaciones moviles en el a mbito de la salud through the University of Zaragoza and Foundation Ibercaja under Grant JIUZ-2017-TEC-03, in part by the Universidad de Zaragoza, in part by the Fundacion Bancaria Ibercaja, in part by the Fundacion CAI in the Programa Ibercaja-CAI de Estancias de Investigacion under Grant IT1/18, in part by the program Estancias de movilidad en el extranjero Jose Castillejo para jovenes doctores through the Spanish Ministry of Education, Culture and Sport under Grant CAS17/00005, in part by the Desarrollo Colaborativo de Soluciones AAL through the Spanish Ministry of Economy and Competitiveness under Grant TIN2014-57028-R, in part by the Organismo Autonomo Programas Educativos Europeos under Grant 2013-1-CZ1-GRU06-14277, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2017-84802-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Agent-based-simulation es_ES
dc.subject Big data es_ES
dc.subject Multi-agent system es_ES
dc.subject Wireless network es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2018.2825954 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIZAR//JIUZ-2017-TEC-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS17%2F00005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-57028-R/ES/DESARROLLLO COLABORATIVO DE SOLUCIONES AAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OAPEE//2013-1-CZ1-GRU06-14277/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Bancaria Ibercaja//JIUZ-2017-TEC-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAI//IT1%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Magariño, I.; Gray, G.; Lacuesta Gilabert, R.; Lloret, J. (2018). Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner. IEEE Access. 6:27958-27970. https://doi.org/10.1109/ACCESS.2018.2825954 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2018.2825954 es_ES
dc.description.upvformatpinicio 27958 es_ES
dc.description.upvformatpfin 27970 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\376426 es_ES
dc.contributor.funder Universidad de Zaragoza es_ES
dc.contributor.funder Fundación Bancaria Ibercaja es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Caja de Ahorros de la Inmaculada de Aragón es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Organismo Autónomo Programas Educativos Europeos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem