Mostrar el registro sencillo del ítem
dc.contributor.author | García-Magariño, Iván | es_ES |
dc.contributor.author | Gray, Geraldine | es_ES |
dc.contributor.author | Lacuesta Gilabert, Raquel | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2020-05-14T03:03:45Z | |
dc.date.available | 2020-05-14T03:03:45Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143116 | |
dc.description.abstract | [EN] Emerging wireless networks have brought Internet and communications to more users and areas. Some of the most relevant emerging wireless technologies are Worldwide Interoperability for Microwave Access, Long-Term Evolution Advanced, and ad hoc and mesh networks. An open challenge is to ensure the reliability and robustness of these networks when individual components fail. The survivability and performance of these networks can be especially relevant when emergencies arise in rural areas, for example supporting communications during a medical emergency. This can be done by anticipating failures and finding alternative solutions. This paper proposes using big data analytics techniques, such as decision trees for detecting nodes that are likely to fail, and so avoid them when routing traffic. This can improve the survivability and performance of networks. The current approach is illustrated with an agent based simulator of wireless networks developed with NetLogo and data mining processes designed with RapidMiner. According to the simulated experimentation, the current approach reduced the communication failures by 51.6% when incorporating rule induction for predicting the most reliable routes. | es_ES |
dc.description.sponsorship | This work was supported in part by the research project Construccion de un framework para agilizar el desarrollo de aplicaciones moviles en el a mbito de la salud through the University of Zaragoza and Foundation Ibercaja under Grant JIUZ-2017-TEC-03, in part by the Universidad de Zaragoza, in part by the Fundacion Bancaria Ibercaja, in part by the Fundacion CAI in the Programa Ibercaja-CAI de Estancias de Investigacion under Grant IT1/18, in part by the program Estancias de movilidad en el extranjero Jose Castillejo para jovenes doctores through the Spanish Ministry of Education, Culture and Sport under Grant CAS17/00005, in part by the Desarrollo Colaborativo de Soluciones AAL through the Spanish Ministry of Economy and Competitiveness under Grant TIN2014-57028-R, in part by the Organismo Autonomo Programas Educativos Europeos under Grant 2013-1-CZ1-GRU06-14277, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2017-84802-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Agent-based-simulation | es_ES |
dc.subject | Big data | es_ES |
dc.subject | Multi-agent system | es_ES |
dc.subject | Wireless network | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2018.2825954 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIZAR//JIUZ-2017-TEC-03/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//CAS17%2F00005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-57028-R/ES/DESARROLLLO COLABORATIVO DE SOLUCIONES AAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/OAPEE//2013-1-CZ1-GRU06-14277/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundación Bancaria Ibercaja//JIUZ-2017-TEC-03/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAI//IT1%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García-Magariño, I.; Gray, G.; Lacuesta Gilabert, R.; Lloret, J. (2018). Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner. IEEE Access. 6:27958-27970. https://doi.org/10.1109/ACCESS.2018.2825954 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2018.2825954 | es_ES |
dc.description.upvformatpinicio | 27958 | es_ES |
dc.description.upvformatpfin | 27970 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\376426 | es_ES |
dc.contributor.funder | Universidad de Zaragoza | es_ES |
dc.contributor.funder | Fundación Bancaria Ibercaja | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Caja de Ahorros de la Inmaculada de Aragón | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Organismo Autónomo Programas Educativos Europeos | es_ES |