- -

Fuzzy Partial Metric Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fuzzy Partial Metric Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gregori Gregori, Valentín es_ES
dc.contributor.author Miñana, Juan-José es_ES
dc.contributor.author Miravet-Fortuño, David es_ES
dc.date.accessioned 2020-05-14T03:04:24Z
dc.date.available 2020-05-14T03:04:24Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 0308-1079 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143127
dc.description "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 01 Dec 2018, available online: https://doi.org/10.1080/03081079.2018.1552687" es_ES
dc.description.abstract [EN] In this paper we provide a concept of fuzzy partial metric space (X, P, ¿) as an extension to fuzzy setting in the sense of Kramosil and Michalek, of the concept of partial metric due to Matthews. This extension has been defined using the residuum operator ¿¿ associated to a continuous t-norm ¿ and without any extra condition on ¿. Similarly, it is defined the stronger concept of GV -fuzzy partial metric (fuzzy partial metric in the sense of George and Veeramani). After defining a concept of open ball in (X, P, ¿), a topology TP on X deduced from P is constructed, and it is showed that (X, TP) is a T0-space. es_ES
dc.description.sponsorship Valentin Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). Juan Jose Minana acknowledges the partially support of the Ministry of Economy and Competitiveness of Spain under Grant TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by the Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the European Union framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of General Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Partial metric space es_ES
dc.subject Fuzzy metric space es_ES
dc.subject Triangular norm es_ES
dc.subject Residuum operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fuzzy Partial Metric Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081079.2018.1552687 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779776/EU/Robotics Technology for Inspection of Ships/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-81731-REDT/ES/LOGICA DIFUSA Y SOFT COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//PROCOE%2F4%2F2017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Gregori Gregori, V.; Miñana, J.; Miravet-Fortuño, D. (2018). Fuzzy Partial Metric Spaces. International Journal of General Systems. https://doi.org/10.1080/03081079.2018.1552687 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/03081079.2018.1552687 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\376916 es_ES
dc.contributor.funder Govern Illes Balears es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bukatin, M., Kopperman, R., & Matthews, S. (2014). Some corollaries of the correspondence between partial metrics and multivalued equalities. Fuzzy Sets and Systems, 256, 57-72. doi:10.1016/j.fss.2013.08.016 es_ES
dc.description.references Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008 es_ES
dc.description.references Demirci, M. (2012). The order-theoretic duality and relations between partial metrics and local equalities. Fuzzy Sets and Systems, 192, 45-57. doi:10.1016/j.fss.2011.04.014 es_ES
dc.description.references George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7 es_ES
dc.description.references Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4 es_ES
dc.description.references Grečova, S., & Morillas, S. (2016). Perceptual similarity between color images using fuzzy metrics. Journal of Visual Communication and Image Representation, 34, 230-235. doi:10.1016/j.jvcir.2015.04.003 es_ES
dc.description.references Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008 es_ES
dc.description.references Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013 es_ES
dc.description.references Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4 es_ES
dc.description.references Gregori, V., & Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), 245-252. doi:10.1016/s0165-0114(00)00088-9 es_ES
dc.description.references Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001 es_ES
dc.description.references Höhle, U., & Klement, E. P. (Eds.). (1995). Non-Classical Logics and their Applications to Fuzzy Subsets. doi:10.1007/978-94-011-0215-5 es_ES
dc.description.references Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7 es_ES
dc.description.references MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.x es_ES
dc.description.references Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535 es_ES
dc.description.references Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006 es_ES
dc.description.references Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313 es_ES
dc.description.references Shukla, S., Gopal, D., & Roldán-López-de-Hierro, A.-F. (2016). Some fixed point theorems in 1-M-complete fuzzy metric-like spaces. International Journal of General Systems, 45(7-8), 815-829. doi:10.1080/03081079.2016.1153084 es_ES
dc.description.references Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5 es_ES
dc.description.references Yue, Y. (2015). Separated ▵+-valued equivalences as probabilistic partial metric spaces. Journal of Intelligent & Fuzzy Systems, 28(6), 2715-2724. doi:10.3233/ifs-151549 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem