Mostrar el registro sencillo del ítem
dc.contributor.author | Melgar-Castañeda, Bruno | es_ES |
dc.contributor.author | Dias, Maria Inês | es_ES |
dc.contributor.author | Barros, L. | es_ES |
dc.contributor.author | Ferreira, I. CFR | es_ES |
dc.contributor.author | Rodríguez López, Antonio Diego | es_ES |
dc.contributor.author | Garcia-Castello, Esperanza M. | es_ES |
dc.date.accessioned | 2020-05-14T03:04:55Z | |
dc.date.available | 2020-05-14T03:04:55Z | |
dc.date.issued | 2019-10-08 | es_ES |
dc.identifier.issn | 1420-3049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143136 | |
dc.description.abstract | [EN] Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of bioactive compounds, peels from Opuntia engelmannii cultivar (cv.) Valencia were optimized by response surface methodology. Randomized extraction runs were performed for each of the technologies employed in order to build effective models with maximum (bioactive molecules content and yield) and minimum (antioxidant activity) responses. A 5-level, 4-factor central composite design was used to obtain target responses as a function of extraction time (t), solid to liquid ratio (S/L), methanol concentration (metOH), and temperature (T). Specific response optimization for each technology was analyzed, discussed, and general optimization from all the responses together was also gather. The optimum values for each factor were: t = 2.5 and 1.4 min, S/L = 5 and 5 g/L, metOH = 34.6 and 0% of methanol and T = 30 and 36.6 °C, achieving maximum responses of 201.6 and 132.9 mg of betalains/g, 13.9 and 8.0 mg of phenolic acids/g, 2.4 and 1.5 mg of flavonoids/g, 71.8% and 79.1% of extractable solid and IC50 values for the antioxidant activity of 2.9 and 3.6, for UAE and MAE, respectively. The present study suggested UAE as the best extraction system, in order to maximize recovery of bioactive compounds with a high antioxidant activity. | es_ES |
dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programmer PT2020 for financial support to CIMO (UID/AGR/00690/2019) and L. Barros and M.I. Dias also thank the national funding by FCT, P.I., through the institutional scientific employment program-contract. The authors are grateful to CONACyT for supporting B. Melgar with his doctoral grant (No. 329930). The authors specially thanks to Maria Luisa Ruiz and the "Laboratorio Agroalimentario de la Comunitat Valenciana" for allow the use of the microwave for the extractions. This work is also funded by the European Regional Development Fund (ERDF) through the Regional Operational Program North 2020, within the scope of Project Mobilizador Norte-01-0247-FEDER-024479: ValorNatural(R) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Molecules | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Opuntia | es_ES |
dc.subject | By-products | es_ES |
dc.subject | Phenolic compounds | es_ES |
dc.subject | Betalains | es_ES |
dc.subject | Extraction optimization | es_ES |
dc.subject | Response Surface Methodology (RSM) | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/molecules24193618 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//NORTE-01-0247-FEDER-024479/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//UID%2FAGR%2F00690%2F2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//329930/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Melgar-Castañeda, B.; Dias, MI.; Barros, L.; Ferreira, IC.; Rodríguez López, AD.; Garcia-Castello, EM. (2019). Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules. 24(19):1-16. https://doi.org/10.3390/molecules24193618 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/molecules24193618 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.pmid | 31597259 | es_ES |
dc.identifier.pmcid | PMC6804160 | es_ES |
dc.relation.pasarela | S\394931 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | GVR Natural Antioxidants Market Analysis By Product (Vitamin C, Vitamin E, Polyphenols, Carotenoids) And Segment Forecasts To 2022https://www.grandviewresearch.com/industry-analysis/natural-antioxidants-market | es_ES |
dc.description.references | The Economics of Natural Color Pigmentshttps://sensientfoodcolors.com/en-us/research-development/economics-natural-color-pigments/ | es_ES |
dc.description.references | Do Prado, D. Z., Capoville, B. L., Delgado, C. H. O., Heliodoro, J. C. A., Pivetta, M. R., Pereira, M. S., … Fleuri, L. F. (2018). Nutraceutical Food: Composition, Biosynthesis, Therapeutic Properties, and Applications. Alternative and Replacement Foods, 95-140. doi:10.1016/b978-0-12-811446-9.00004-6 | es_ES |
dc.description.references | Aruwa, C. E., Amoo, S. O., & Kudanga, T. (2018). Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review. Food Research International, 112, 328-344. doi:10.1016/j.foodres.2018.06.047 | es_ES |
dc.description.references | Cardoso-Ugarte, G. A., Sosa-Morales, M. E., Ballard, T., Liceaga, A., & San Martín-González, M. F. (2014). Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT - Food Science and Technology, 59(1), 276-282. doi:10.1016/j.lwt.2014.05.025 | es_ES |
dc.description.references | Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT - Food Science and Technology, 64(2), 1114-1122. doi:10.1016/j.lwt.2015.07.024 | es_ES |
dc.description.references | Laqui-Vilca, C., Aguilar-Tuesta, S., Mamani-Navarro, W., Montaño-Bustamante, J., & Condezo-Hoyos, L. (2018). Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Industrial Crops and Products, 111, 606-614. doi:10.1016/j.indcrop.2017.11.034 | es_ES |
dc.description.references | Thirugnanasambandham, K., & Sivakumar, V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural Sciences, 16(1), 41-48. doi:10.1016/j.jssas.2015.02.001 | es_ES |
dc.description.references | Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences, 13(7), 8615-8627. doi:10.3390/ijms13078615 | es_ES |
dc.description.references | Barba, F. J., Puértolas, E., Brnčić, M., Panchev, I. N., Dimitrov, D. A., Athès-Dutour, V., … Souchon, I. (2015). Emerging extraction. Food Waste Recovery, 249-272. doi:10.1016/b978-0-12-800351-0.00011-0 | es_ES |
dc.description.references | Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., … Ferreira, I. (2017). By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Industrial Crops and Products, 107, 353-359. doi:10.1016/j.indcrop.2017.06.011 | es_ES |
dc.description.references | Chougui, N., Djerroud, N., Naraoui, F., Hadjal, S., Aliane, K., Zeroual, B., & Larbat, R. (2015). Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chemistry, 173, 382-390. doi:10.1016/j.foodchem.2014.10.025 | es_ES |
dc.description.references | Mena, P., Tassotti, M., Andreu, L., Nuncio-Jáuregui, N., Legua, P., Del Rio, D., & Hernández, F. (2018). Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Research International, 108, 301-308. doi:10.1016/j.foodres.2018.03.062 | es_ES |
dc.description.references | Yeddes, N., Chérif, J., Guyot, S., Sotin, H., & Ayadi, M. (2013). Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants, 2(2), 37-51. doi:10.3390/antiox2020037 | es_ES |
dc.description.references | Allai, L., Druart, X., Öztürk, M., BenMoula, A., Nasser, B., & El Amiri, B. (2016). Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage. Animal Reproduction Science, 175, 1-9. doi:10.1016/j.anireprosci.2016.09.013 | es_ES |
dc.description.references | Ammar, I., Ben Salem, M., Harrabi, B., Mzid, M., Bardaa, S., Sahnoun, Z., … Ennouri, M. (2018). Anti-inflammatory activity and phenolic composition of prickly pear ( Opuntia ficus-indica ) flowers. Industrial Crops and Products, 112, 313-319. doi:10.1016/j.indcrop.2017.12.028 | es_ES |
dc.description.references | Betancourt, C., Cejudo-Bastante, M. J., Heredia, F. J., & Hurtado, N. (2017). Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactus fruit. Food Research International, 101, 173-179. doi:10.1016/j.foodres.2017.09.007 | es_ES |
dc.description.references | Mata, A., Ferreira, J. P., Semedo, C., Serra, T., Duarte, C. M. M., & Bronze, M. R. (2016). Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chemistry, 210, 558-565. doi:10.1016/j.foodchem.2016.04.033 | es_ES |
dc.description.references | Melgar, B., Pereira, E., Oliveira, M. B. P. P., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Sokovic, M., … Ferreira, I. C. F. R. (2017). Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Research International, 101, 259-265. doi:10.1016/j.foodres.2017.09.024 | es_ES |
dc.description.references | Fathordoobady, F., Mirhosseini, H., Selamat, J., & Manap, M. Y. A. (2016). Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chemistry, 202, 70-80. doi:10.1016/j.foodchem.2016.01.121 | es_ES |
dc.description.references | García-Cruz, L., Dueñas, M., Santos-Buelgas, C., Valle-Guadarrama, S., & Salinas-Moreno, Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya ( Stenocereus spp.) fruit from two species ( S. Pruinosus and S. stellatus ). Food Chemistry, 234, 111-118. doi:10.1016/j.foodchem.2017.04.174 | es_ES |
dc.description.references | Herbach, K. M., Stintzing, F. C., & Carle, R. (2005). Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 19(18), 2603-2616. doi:10.1002/rcm.2103 | es_ES |
dc.description.references | Spórna-Kucab, A., Ignatova, S., Garrard, I., & Wybraniec, S. (2013). Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. Journal of Chromatography B, 941, 54-61. doi:10.1016/j.jchromb.2013.10.001 | es_ES |
dc.description.references | Wybraniec, S., Starzak, K., Szneler, E., & Pietrzkowski, Z. (2016). Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract. Journal of Chromatography B, 1036-1037, 20-32. doi:10.1016/j.jchromb.2016.09.040 | es_ES |
dc.description.references | Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303-313. doi:10.1016/s1350-4177(01)00071-2 | es_ES |
dc.description.references | Strack, D., Vogt, T., & Schliemann, W. (2003). Recent advances in betalain research. Phytochemistry, 62(3), 247-269. doi:10.1016/s0031-9422(02)00564-2 | es_ES |
dc.description.references | Sawicki, T., & Wiczkowski, W. (2018). The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chemistry, 259, 292-303. doi:10.1016/j.foodchem.2018.03.143 | es_ES |
dc.description.references | Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., … Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670-675. doi:10.1016/j.foodres.2011.07.002 | es_ES |
dc.description.references | Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT - Food Science and Technology, 68, 98-104. doi:10.1016/j.lwt.2015.12.029 | es_ES |
dc.description.references | Guldiken, B., Toydemir, G., Nur Memis, K., Okur, S., Boyacioglu, D., & Capanoglu, E. (2016). Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility. International Journal of Molecular Sciences, 17(6), 858. doi:10.3390/ijms17060858 | es_ES |
dc.description.references | Ferreres, F., Grosso, C., Gil-Izquierdo, A., Valentão, P., Mota, A. T., & Andrade, P. B. (2017). Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chemistry, 230, 463-474. doi:10.1016/j.foodchem.2017.03.061 | es_ES |
dc.description.references | Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108(3), 977-985. doi:10.1016/j.foodchem.2007.12.009 | es_ES |
dc.description.references | Primorac, T., Požar, M., Sokolić, F., Zoranić, L., & Urbic, T. (2018). A simple two dimensional model of methanol. Journal of Molecular Liquids, 262, 46-57. doi:10.1016/j.molliq.2018.04.055 | es_ES |
dc.description.references | Bessada, S. M. F., Barreira, J. C. M., Barros, L., Ferreira, I. C. F. R., & Oliveira, M. B. P. P. (2016). Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Industrial Crops and Products, 89, 45-51. doi:10.1016/j.indcrop.2016.04.065 | es_ES |
dc.description.references | Roriz, C. L., Barros, L., Prieto, M. A., Morales, P., & Ferreira, I. C. F. R. (2017). Floral parts of Gomphrena globosa L. as a novel alternative source of betacyanins: Optimization of the extraction using response surface methodology. Food Chemistry, 229, 223-234. doi:10.1016/j.foodchem.2017.02.073 | es_ES |