- -

Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aparicio-Fernández, Carolina es_ES
dc.contributor.author Vivancos, José-Luis es_ES
dc.contributor.author Cosar-Jorda, Paula es_ES
dc.contributor.author Buswell, Richard A. es_ES
dc.date.accessioned 2020-05-14T03:05:00Z
dc.date.available 2020-05-14T03:05:00Z
dc.date.issued 2019-08-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143139
dc.description.abstract [EN] In this paper, the building energy performance modelling tools TRNSYS (TRaNsient SYstem Simulation program) and TRNFlow (TRaNsient Flow) have been used to obtain the energy demand of a domestic building that includes the air infiltration rate and the effect of natural ventilation by using window operation data. An initial model has been fitted to monitoring data from the case study, building over a period when there were no heat gains in the building in order to obtain the building infiltration air change rate. After this calibration, a constant air-change rate model was established alongside two further models developed in the calibration process. Air change rate has been explored in order to determine air infiltrations caused by natural ventilation due to windows being opened. These results were compared to estimates gained through a previously published method and were found to be in good agreement. The main conclusion from the work was that the modelling ventilation rate in naturally ventilated residential buildings using TRNSYS and TRNSFlow can improve the simulation-based energy assessment. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy demand es_ES
dc.subject Residential buildings es_ES
dc.subject Window opening es_ES
dc.subject Natural ventilation es_ES
dc.subject Air infiltration rate es_ES
dc.subject Calibrated simulation es_ES
dc.subject TRNSYS es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12173360 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Aparicio-Fernández, C.; Vivancos, J.; Cosar-Jorda, P.; Buswell, RA. (2019). Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation. Energies. 12(17):1-13. https://doi.org/10.3390/en12173360 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12173360 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\397441 es_ES
dc.description.references Grygierek, K., & Ferdyn-Grygierek, J. (2018). Multi-Objective Optimization of the Envelope of Building with Natural Ventilation. Energies, 11(6), 1383. doi:10.3390/en11061383 es_ES
dc.description.references Moran, P., Goggins, J., & Hajdukiewicz, M. (2017). Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. Energy and Buildings, 139, 590-607. doi:10.1016/j.enbuild.2017.01.029 es_ES
dc.description.references Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner Production, 109, 118-130. doi:10.1016/j.jclepro.2015.05.139 es_ES
dc.description.references Cosar-Jorda, P., Buswell, R. A., & Mitchell, V. A. (2018). Determining of the role of ventilation in residential energy demand reduction using a heat-balance approach. Building and Environment, 144, 508-518. doi:10.1016/j.buildenv.2018.08.053 es_ES
dc.description.references Feijó-Muñoz, J., Poza-Casado, I., González-Lezcano, R. A., Pardal, C., Echarri, V., Assiego De Larriva, R., … Meiss, A. (2018). Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study. Energies, 11(4), 704. doi:10.3390/en11040704 es_ES
dc.description.references Domínguez-Amarillo, S., Fernández-Agüera, J., Campano, M. Á., & Acosta, I. (2019). Effect of Airtightness on Thermal Loads in Legacy Low-Income Housing. Energies, 12(9), 1677. doi:10.3390/en12091677 es_ES
dc.description.references Cheng, P. L., & Li, X. (2018). Air infiltration rates in the bedrooms of 202 residences and estimated parametric infiltration rate distribution in Guangzhou, China. Energy and Buildings, 164, 219-225. doi:10.1016/j.enbuild.2017.12.062 es_ES
dc.description.references Hou, J., Zhang, Y., Sun, Y., Wang, P., Zhang, Q., Kong, X., & Sundell, J. (2018). Air change rates at night in northeast Chinese homes. Building and Environment, 132, 273-281. doi:10.1016/j.buildenv.2018.01.030 es_ES
dc.description.references Zhai, Z. (John), Mankibi, M. E., & Zoubir, A. (2015). Review of Natural Ventilation Models. Energy Procedia, 78, 2700-2705. doi:10.1016/j.egypro.2015.11.355 es_ES
dc.description.references Han, G., Srebric, J., & Enache-Pommer, E. (2015). Different modeling strategies of infiltration rates for an office building to improve accuracy of building energy simulations. Energy and Buildings, 86, 288-295. doi:10.1016/j.enbuild.2014.10.028 es_ES
dc.description.references Laverge, J., & Janssens, A. (2013). Optimization of design flow rates and component sizing for residential ventilation. Building and Environment, 65, 81-89. doi:10.1016/j.buildenv.2013.03.019 es_ES
dc.description.references Bhandari, M., Hun, D., Shrestha, S., Pallin, S., & Lapsa, M. (2018). A Simplified Methodology to Estimate Energy Savings in Commercial Buildings from Improvements in Airtightness. Energies, 11(12), 3322. doi:10.3390/en11123322 es_ES
dc.description.references Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 127, 870-883. doi:10.1016/j.enbuild.2016.06.023 es_ES
dc.description.references Tronchin, L., Fabbri, K., & Bertolli, C. (2018). Controlled Mechanical Ventilation in Buildings: A Comparison between Energy Use and Primary Energy among Twenty Different Devices. Energies, 11(8), 2123. doi:10.3390/en11082123 es_ES
dc.description.references Ashdown, M. M. A., Crawley, J., Biddulph, P., Wingfield, J., Lowe, R., & Elwell, C. A. (2019). Characterising the airtightness of dwellings. International Journal of Building Pathology and Adaptation, 38(1), 89-106. doi:10.1108/ijbpa-02-2019-0024 es_ES
dc.description.references Crawley, J., Wingfield, J., & Elwell, C. (2018). The relationship between airtightness and ventilation in new UK dwellings. Building Services Engineering Research and Technology, 40(3), 274-289. doi:10.1177/0143624418822199 es_ES
dc.description.references Jones, B., Das, P., Chalabi, Z., Davies, M., Hamilton, I., Lowe, R., … Taylor, J. (2015). Assessing uncertainty in housing stock infiltration rates and associated heat loss: English and UK case studies. Building and Environment, 92, 644-656. doi:10.1016/j.buildenv.2015.05.033 es_ES
dc.description.references Schulze, T., & Eicker, U. (2013). Controlled natural ventilation for energy efficient buildings. Energy and Buildings, 56, 221-232. doi:10.1016/j.enbuild.2012.07.044 es_ES
dc.description.references Stavridou, A. D., & Prinos, P. E. (2017). Unsteady CFD Simulation in a Naturally Ventilated Room with a Localized Heat Source. Procedia Environmental Sciences, 38, 322-330. doi:10.1016/j.proenv.2017.03.087 es_ES
dc.description.references LEEDR Project Home Energy Datasethttps://repository.lboro.ac.uk/articles/LEEDR_project_home_energy_dataset/6176450 es_ES
dc.description.references Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current)http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 es_ES
dc.description.references Buswell, R., Webb, L., Mitchell, V., & Leder Mackley, K. (2016). Multidisciplinary research: should effort be the measure of success? Building Research & Information, 45(5), 539-555. doi:10.1080/09613218.2016.1194601 es_ES
dc.description.references National Grid UKhttps://www.nationalgrid.com/uk/gas/market-operations-and-data/calorific-value-cv es_ES
dc.description.references Home Heating Guide: Boiler Efficiency Tableshttps://www.homeheatingguide.co.uk/efficiency-tables es_ES
dc.description.references Ruiz, G., & Bandera, C. (2017). Validation of Calibrated Energy Models: Common Errors. Energies, 10(10), 1587. doi:10.3390/en10101587 es_ES
dc.description.references Hong, T., Piette, M. A., Chen, Y., Lee, S. H., Taylor-Lange, S. C., Zhang, R., … Price, P. (2015). Commercial Building Energy Saver: An energy retrofit analysis toolkit. Applied Energy, 159, 298-309. doi:10.1016/j.apenergy.2015.09.002 es_ES
dc.description.references Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of The Total Environment, 445-446, 165-176. doi:10.1016/j.scitotenv.2012.12.042 es_ES
dc.description.references Dimitroulopoulou, C. (2012). Ventilation in European dwellings: A review. Building and Environment, 47, 109-125. doi:10.1016/j.buildenv.2011.07.016 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem