Mostrar el registro sencillo del ítem
dc.contributor.author | Aparicio-Fernández, Carolina | es_ES |
dc.contributor.author | Vivancos, José-Luis | es_ES |
dc.contributor.author | Cosar-Jorda, Paula | es_ES |
dc.contributor.author | Buswell, Richard A. | es_ES |
dc.date.accessioned | 2020-05-14T03:05:00Z | |
dc.date.available | 2020-05-14T03:05:00Z | |
dc.date.issued | 2019-08-31 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143139 | |
dc.description.abstract | [EN] In this paper, the building energy performance modelling tools TRNSYS (TRaNsient SYstem Simulation program) and TRNFlow (TRaNsient Flow) have been used to obtain the energy demand of a domestic building that includes the air infiltration rate and the effect of natural ventilation by using window operation data. An initial model has been fitted to monitoring data from the case study, building over a period when there were no heat gains in the building in order to obtain the building infiltration air change rate. After this calibration, a constant air-change rate model was established alongside two further models developed in the calibration process. Air change rate has been explored in order to determine air infiltrations caused by natural ventilation due to windows being opened. These results were compared to estimates gained through a previously published method and were found to be in good agreement. The main conclusion from the work was that the modelling ventilation rate in naturally ventilated residential buildings using TRNSYS and TRNSFlow can improve the simulation-based energy assessment. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Energy demand | es_ES |
dc.subject | Residential buildings | es_ES |
dc.subject | Window opening | es_ES |
dc.subject | Natural ventilation | es_ES |
dc.subject | Air infiltration rate | es_ES |
dc.subject | Calibrated simulation | es_ES |
dc.subject | TRNSYS | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en12173360 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.description.bibliographicCitation | Aparicio-Fernández, C.; Vivancos, J.; Cosar-Jorda, P.; Buswell, RA. (2019). Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation. Energies. 12(17):1-13. https://doi.org/10.3390/en12173360 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en12173360 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\397441 | es_ES |
dc.description.references | Grygierek, K., & Ferdyn-Grygierek, J. (2018). Multi-Objective Optimization of the Envelope of Building with Natural Ventilation. Energies, 11(6), 1383. doi:10.3390/en11061383 | es_ES |
dc.description.references | Moran, P., Goggins, J., & Hajdukiewicz, M. (2017). Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. Energy and Buildings, 139, 590-607. doi:10.1016/j.enbuild.2017.01.029 | es_ES |
dc.description.references | Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner Production, 109, 118-130. doi:10.1016/j.jclepro.2015.05.139 | es_ES |
dc.description.references | Cosar-Jorda, P., Buswell, R. A., & Mitchell, V. A. (2018). Determining of the role of ventilation in residential energy demand reduction using a heat-balance approach. Building and Environment, 144, 508-518. doi:10.1016/j.buildenv.2018.08.053 | es_ES |
dc.description.references | Feijó-Muñoz, J., Poza-Casado, I., González-Lezcano, R. A., Pardal, C., Echarri, V., Assiego De Larriva, R., … Meiss, A. (2018). Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study. Energies, 11(4), 704. doi:10.3390/en11040704 | es_ES |
dc.description.references | Domínguez-Amarillo, S., Fernández-Agüera, J., Campano, M. Á., & Acosta, I. (2019). Effect of Airtightness on Thermal Loads in Legacy Low-Income Housing. Energies, 12(9), 1677. doi:10.3390/en12091677 | es_ES |
dc.description.references | Cheng, P. L., & Li, X. (2018). Air infiltration rates in the bedrooms of 202 residences and estimated parametric infiltration rate distribution in Guangzhou, China. Energy and Buildings, 164, 219-225. doi:10.1016/j.enbuild.2017.12.062 | es_ES |
dc.description.references | Hou, J., Zhang, Y., Sun, Y., Wang, P., Zhang, Q., Kong, X., & Sundell, J. (2018). Air change rates at night in northeast Chinese homes. Building and Environment, 132, 273-281. doi:10.1016/j.buildenv.2018.01.030 | es_ES |
dc.description.references | Zhai, Z. (John), Mankibi, M. E., & Zoubir, A. (2015). Review of Natural Ventilation Models. Energy Procedia, 78, 2700-2705. doi:10.1016/j.egypro.2015.11.355 | es_ES |
dc.description.references | Han, G., Srebric, J., & Enache-Pommer, E. (2015). Different modeling strategies of infiltration rates for an office building to improve accuracy of building energy simulations. Energy and Buildings, 86, 288-295. doi:10.1016/j.enbuild.2014.10.028 | es_ES |
dc.description.references | Laverge, J., & Janssens, A. (2013). Optimization of design flow rates and component sizing for residential ventilation. Building and Environment, 65, 81-89. doi:10.1016/j.buildenv.2013.03.019 | es_ES |
dc.description.references | Bhandari, M., Hun, D., Shrestha, S., Pallin, S., & Lapsa, M. (2018). A Simplified Methodology to Estimate Energy Savings in Commercial Buildings from Improvements in Airtightness. Energies, 11(12), 3322. doi:10.3390/en11123322 | es_ES |
dc.description.references | Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 127, 870-883. doi:10.1016/j.enbuild.2016.06.023 | es_ES |
dc.description.references | Tronchin, L., Fabbri, K., & Bertolli, C. (2018). Controlled Mechanical Ventilation in Buildings: A Comparison between Energy Use and Primary Energy among Twenty Different Devices. Energies, 11(8), 2123. doi:10.3390/en11082123 | es_ES |
dc.description.references | Ashdown, M. M. A., Crawley, J., Biddulph, P., Wingfield, J., Lowe, R., & Elwell, C. A. (2019). Characterising the airtightness of dwellings. International Journal of Building Pathology and Adaptation, 38(1), 89-106. doi:10.1108/ijbpa-02-2019-0024 | es_ES |
dc.description.references | Crawley, J., Wingfield, J., & Elwell, C. (2018). The relationship between airtightness and ventilation in new UK dwellings. Building Services Engineering Research and Technology, 40(3), 274-289. doi:10.1177/0143624418822199 | es_ES |
dc.description.references | Jones, B., Das, P., Chalabi, Z., Davies, M., Hamilton, I., Lowe, R., … Taylor, J. (2015). Assessing uncertainty in housing stock infiltration rates and associated heat loss: English and UK case studies. Building and Environment, 92, 644-656. doi:10.1016/j.buildenv.2015.05.033 | es_ES |
dc.description.references | Schulze, T., & Eicker, U. (2013). Controlled natural ventilation for energy efficient buildings. Energy and Buildings, 56, 221-232. doi:10.1016/j.enbuild.2012.07.044 | es_ES |
dc.description.references | Stavridou, A. D., & Prinos, P. E. (2017). Unsteady CFD Simulation in a Naturally Ventilated Room with a Localized Heat Source. Procedia Environmental Sciences, 38, 322-330. doi:10.1016/j.proenv.2017.03.087 | es_ES |
dc.description.references | LEEDR Project Home Energy Datasethttps://repository.lboro.ac.uk/articles/LEEDR_project_home_energy_dataset/6176450 | es_ES |
dc.description.references | Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current)http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 | es_ES |
dc.description.references | Buswell, R., Webb, L., Mitchell, V., & Leder Mackley, K. (2016). Multidisciplinary research: should effort be the measure of success? Building Research & Information, 45(5), 539-555. doi:10.1080/09613218.2016.1194601 | es_ES |
dc.description.references | National Grid UKhttps://www.nationalgrid.com/uk/gas/market-operations-and-data/calorific-value-cv | es_ES |
dc.description.references | Home Heating Guide: Boiler Efficiency Tableshttps://www.homeheatingguide.co.uk/efficiency-tables | es_ES |
dc.description.references | Ruiz, G., & Bandera, C. (2017). Validation of Calibrated Energy Models: Common Errors. Energies, 10(10), 1587. doi:10.3390/en10101587 | es_ES |
dc.description.references | Hong, T., Piette, M. A., Chen, Y., Lee, S. H., Taylor-Lange, S. C., Zhang, R., … Price, P. (2015). Commercial Building Energy Saver: An energy retrofit analysis toolkit. Applied Energy, 159, 298-309. doi:10.1016/j.apenergy.2015.09.002 | es_ES |
dc.description.references | Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of The Total Environment, 445-446, 165-176. doi:10.1016/j.scitotenv.2012.12.042 | es_ES |
dc.description.references | Dimitroulopoulou, C. (2012). Ventilation in European dwellings: A review. Building and Environment, 47, 109-125. doi:10.1016/j.buildenv.2011.07.016 | es_ES |