- -

A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions

Show full item record

Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules. 23(10). https://doi.org/10.3390/molecules23102646

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143316

Files in this item

Item Metadata

Title: A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions
Author: Martínez-Aquino, Carlos Costero, Ana M. Gil Grau, Salvador Gaviña, Pablo
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
[EN] A new environmentally-friendly, simple, selective and sensitive probe for detecting formaldehyde, based on naturally-occurring compounds, through either colorimetric or fluorescence changes, is described. The probe ...[+]
Subjects: Formaldehyde , Chromogenic sensor , Gas phase , Environmentally-friendly , Pictet-Spengler
Copyrigths: Reconocimiento (by)
Source:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules23102646
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/molecules23102646
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-4-R/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE NEUROTRASMISORES/
GV/PROMETEOII/2014/047
MICINN/AGL2015-70235-C2-2-R
Thanks:
This research was funded by the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047).
Type: Artículo

References

https://mcgroup.co.uk/news/20140627/formaldehyde-production-exceed-52-mln-tonnes.html

Goris, J. A., Ang, S., & Navarro, C. (1998). Laboratory Safety: Minimizing the Toxic Effects of Formaldehyde. Laboratory Medicine, 29(1), 39-43. doi:10.1093/labmed/29.1.39

Luo, W., Li, H., Zhang, Y., & Ang, C. Y. . (2001). Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 753(2), 253-257. doi:10.1016/s0378-4347(00)00552-1 [+]
https://mcgroup.co.uk/news/20140627/formaldehyde-production-exceed-52-mln-tonnes.html

Goris, J. A., Ang, S., & Navarro, C. (1998). Laboratory Safety: Minimizing the Toxic Effects of Formaldehyde. Laboratory Medicine, 29(1), 39-43. doi:10.1093/labmed/29.1.39

Luo, W., Li, H., Zhang, Y., & Ang, C. Y. . (2001). Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 753(2), 253-257. doi:10.1016/s0378-4347(00)00552-1

ROCHA, F., COELHO, L., LOPES, M., CARVALHO, L., FRACASSIDASILVA, J., DOLAGO, C., & GUTZ, I. (2008). Environmental formaldehyde analysis by active diffusive sampling with a bundle of polypropylene porous capillaries followed by capillary zone electrophoretic separation and contactless conductivity detection. Talanta, 76(2), 271-275. doi:10.1016/j.talanta.2008.02.037

Korpan, Y. I., Gonchar, M. V., Sibirny, A. A., Martelet, C., El’skaya, A. V., Gibson, T. D., & Soldatkin, A. P. (2000). Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosensors and Bioelectronics, 15(1-2), 77-83. doi:10.1016/s0956-5663(00)00054-3

Dong, S., & Dasgupta, P. K. (1986). Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environmental Science & Technology, 20(6), 637-640. doi:10.1021/es00148a016

MITSUBAYASHI, K., NISHIO, G., SAWAI, M., SAITO, T., KUDO, H., SAITO, H., … MARTY, J. (2008). A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sensors and Actuators B: Chemical, 130(1), 32-37. doi:10.1016/j.snb.2007.07.086

DEMKIV, O., SMUTOK, O., PARYZHAK, S., GAYDA, G., SULTANOV, Y., GUSCHIN, D., … GONCHAR, M. (2008). Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta, 76(4), 837-846. doi:10.1016/j.talanta.2008.04.040

Dennison, M. J., Hall, J. M., & Turner, A. P. F. (1996). Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. The Analyst, 121(12), 1769. doi:10.1039/an9962101769

Wang, X., Si, Y., Mao, X., Li, Y., Yu, J., Wang, H., & Ding, B. (2013). Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. The Analyst, 138(17), 5129. doi:10.1039/c3an00812f

Pinheiro, H. L. ., de Andrade, M. V., de Paula Pereira, P. A., & de Andrade, J. B. (2004). Spectrofluorimetric determination of formaldehyde in air after collection onto silica cartridges coated with Fluoral P. Microchemical Journal, 78(1), 15-20. doi:10.1016/j.microc.2004.02.017

Antwi-Boampong, S., Peng, J. S., Carlan, J., & BelBruno, J. J. (2014). A Molecularly Imprinted Fluoral-P/Polyaniline Double Layer Sensor System for Selective Sensing of Formaldehyde. IEEE Sensors Journal, 14(5), 1490-1498. doi:10.1109/jsen.2014.2298872

Xu, Z., Chen, J., Hu, L.-L., Tan, Y., Liu, S.-H., & Yin, J. (2017). Recent advances in formaldehyde-responsive fluorescent probes. Chinese Chemical Letters, 28(10), 1935-1942. doi:10.1016/j.cclet.2017.07.018

Brewer, T. F., & Chang, C. J. (2015). An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10886-10889. doi:10.1021/jacs.5b05340

Roth, A., Li, H., Anorma, C., & Chan, J. (2015). A Reaction-Based Fluorescent Probe for Imaging of Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10890-10893. doi:10.1021/jacs.5b05339

Li, J.-B., Wang, Q.-Q., Yuan, L., Wu, Y.-X., Hu, X.-X., Zhang, X.-B., & Tan, W. (2016). A two-photon fluorescent probe for bio-imaging of formaldehyde in living cells and tissues. The Analyst, 141(11), 3395-3402. doi:10.1039/c6an00473c

Tang, Y., Kong, X., Xu, A., Dong, B., & Lin, W. (2016). Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angewandte Chemie International Edition, 55(10), 3356-3359. doi:10.1002/anie.201510373

He, L., Yang, X., Liu, Y., Kong, X., & Lin, W. (2016). A ratiometric fluorescent formaldehyde probe for bioimaging applications. Chemical Communications, 52(21), 4029-4032. doi:10.1039/c5cc09796g

Singha, S., Jun, Y. W., Bae, J., & Ahn, K. H. (2017). Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts. Analytical Chemistry, 89(6), 3724-3731. doi:10.1021/acs.analchem.7b00044

Song, H., Rajendiran, S., Kim, N., Jeong, S. K., Koo, E., Park, G., … Yoon, S. (2012). A tailor designed fluorescent ‘turn-on’ sensor of formaldehyde based on the BODIPY motif. Tetrahedron Letters, 53(37), 4913-4916. doi:10.1016/j.tetlet.2012.06.117

Zhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043

Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030

Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031

El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224

Li, Z., Xue, Z., Wu, Z., Han, J., & Han, S. (2011). Chromo-fluorogenic detection of aldehydes with a rhodamine based sensor featuring an intramolecular deoxylactam. Organic & Biomolecular Chemistry, 9(22), 7652. doi:10.1039/c1ob06448g

Guglielmino, M., Allouch, A., Serra, C. A., & Calvé, S. L. (2017). Development of microfluidic analytical method for on-line gaseous Formaldehyde detection. Sensors and Actuators B: Chemical, 243, 963-970. doi:10.1016/j.snb.2016.11.093

Xia, H., Hu, J., Tang, J., Xu, K., Hou, X., & Wu, P. (2016). A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air. Scientific Reports, 6(1). doi:10.1038/srep36794

Feng, L., Musto, C. J., & Suslick, K. S. (2010). A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. Journal of the American Chemical Society, 132(12), 4046-4047. doi:10.1021/ja910366p

Guo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141

He, L., Yang, X., Ren, M., Kong, X., Liu, Y., & Lin, W. (2016). An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors. Chemical Communications, 52(61), 9582-9585. doi:10.1039/c6cc04254f

Gangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514a

Lin, Q., Fan, Y.-Q., Gong, G.-F., Mao, P.-P., Wang, J., Guan, X.-W., … Wei, T.-B. (2018). Ultrasensitive Detection of Formaldehyde in Gas and Solutions by a Catalyst Preplaced Sensor Based on a Pillar[5]arene Derivative. ACS Sustainable Chemistry & Engineering, 6(7), 8775-8781. doi:10.1021/acssuschemeng.8b01124

Cox, E. D., & Cook, J. M. (1995). The Pictet-Spengler condensation: a new direction for an old reaction. Chemical Reviews, 95(6), 1797-1842. doi:10.1021/cr00038a004

Jonsson, G., Launosalo, T., Salomaa, P., Walle, T., Sjöberg, B., Bunnenberg, E., … Records, R. (1966). Fluorescence Studies on Some 6,7-Substituted 3,4-Dihydroisoquinolines Formed from 3-Hydroxytyramine (Dopamine) and Formaldehyde. Acta Chemica Scandinavica, 20, 2755-2762. doi:10.3891/acta.chem.scand.20-2755

BJÖRKLUND, A., EHINGER, B., & FALCK, B. (1968). A METHOD FOR DIFFERENTIATING DOPAMINE FROM NORADRENALINE IN TISSUE SECTIONS BY MICROSPECTROFLUOROMETRY. Journal of Histochemistry & Cytochemistry, 16(4), 263-270. doi:10.1177/16.4.263

Stöckigt, J., Antonchick, A. P., Wu, F., & Waldmann, H. (2011). The Pictet-Spengler Reaction in Nature and in Organic Chemistry. Angewandte Chemie International Edition, 50(37), 8538-8564. doi:10.1002/anie.201008071

Allou, L., El Maimouni, L., & Le Calvé, S. (2011). Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition. Atmospheric Environment, 45(17), 2991-2998. doi:10.1016/j.atmosenv.2010.05.044

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record