- -

Drug delivery nanosystems for the localized treatment of glioblastoma multiforme

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Drug delivery nanosystems for the localized treatment of glioblastoma multiforme

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nam, L. es_ES
dc.contributor.author Coll Merino, Mª Carmen es_ES
dc.contributor.author Erthal, L.C.S. es_ES
dc.contributor.author De La Torre-Paredes, Cristina es_ES
dc.contributor.author Serrano,D. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Santos-Martinez, M.J. es_ES
dc.contributor.author Ruiz Hernández, E. es_ES
dc.date.accessioned 2020-05-15T03:03:29Z
dc.date.available 2020-05-15T03:03:29Z
dc.date.issued 2018-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143331
dc.description.abstract [EN] Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood-brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood-brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma. es_ES
dc.description.sponsorship This research was funded by an Ussher start-up funding award (School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin) and the European Union’s Horizon 2020 research and innovation program under Grant agreement No. 708036. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drug delivery es_ES
dc.subject Glioblastoma multiforme es_ES
dc.subject Chemotherapy es_ES
dc.subject Local treatment es_ES
dc.subject Nanoparticles es_ES
dc.subject Theranostics es_ES
dc.subject Contrast agents es_ES
dc.subject Gene delivery es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Drug delivery nanosystems for the localized treatment of glioblastoma multiforme es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma11050779 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/708036/EU/Development of a chemotherapeutic gel for glioblastoma multiforme treatment/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Nam, L.; Coll Merino, MC.; Erthal, L.; De La Torre-Paredes, C.; Serrano, D.; Martínez-Máñez, R.; Santos-Martinez, M.... (2018). Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials. 11(5). https://doi.org/10.3390/ma11050779 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma11050779 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 29751640 es_ES
dc.relation.pasarela S\363843 es_ES
dc.contributor.funder Trinity College Dublin es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer Genetics, 205(12), 613-621. doi:10.1016/j.cancergen.2012.10.009 es_ES
dc.description.references Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., … Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. doi:10.1007/s00401-007-0243-4 es_ES
dc.description.references Gutkin, A., Cohen, Z. R., & Peer, D. (2016). Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opinion on Drug Delivery, 13(11), 1573-1582. doi:10.1080/17425247.2016.1200557 es_ES
dc.description.references Omuro, A. (2013). Glioblastoma and Other Malignant Gliomas. JAMA, 310(17), 1842. doi:10.1001/jama.2013.280319 es_ES
dc.description.references Wang, Y., & Jiang, T. (2013). Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Letters, 331(2), 139-146. doi:10.1016/j.canlet.2012.12.024 es_ES
dc.description.references Gallego, O. (2015). Nonsurgical treatment of recurrent glioblastoma. Current Oncology, 22(4), 273. doi:10.3747/co.22.2436 es_ES
dc.description.references Carlsson, S. K., Brothers, S. P., & Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 6(11), 1359-1370. doi:10.15252/emmm.201302627 es_ES
dc.description.references Yamasaki, F., Kurisu, K., Satoh, K., Arita, K., Sugiyama, K., Ohtaki, M., … Thohar, M. A. (2005). Apparent Diffusion Coefficient of Human Brain Tumors at MR Imaging. Radiology, 235(3), 985-991. doi:10.1148/radiol.2353031338 es_ES
dc.description.references Gupta, A., Young, R. J., Shah, A. D., Schweitzer, A. D., Graber, J. J., Shi, W., … Omuro, A. M. P. (2014). Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification. Clinical Neuroradiology, 25(2), 143-150. doi:10.1007/s00062-014-0289-3 es_ES
dc.description.references Fakhoury, M. (2015). Drug delivery approaches for the treatment of glioblastoma multiforme. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1365-1373. doi:10.3109/21691401.2015.1052467 es_ES
dc.description.references Štolc, S., Jakubíková, L., & Kukurová, I. (2011). Body distribution of 11C-methionine and 18FDG in rat measured by microPET. Interdisciplinary Toxicology, 4(1). doi:10.2478/v10102-011-0010-1 es_ES
dc.description.references Galldiks, N., Dunkl, V., Kracht, L. W., Vollmar, S., Jacobs, A. H., Fink, G. R., & Schroeter, M. (2012). Volumetry of [11C]-Methionine Positron Emission Tomographic Uptake as a Prognostic Marker before Treatment of Patients with Malignant Glioma. Molecular Imaging, 11(6), 7290.2012.00022. doi:10.2310/7290.2012.00022 es_ES
dc.description.references Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1 es_ES
dc.description.references Martínez-Garcia, M., Álvarez-Linera, J., Carrato, C., Ley, L., Luque, R., Maldonado, X., … Gil-Gil, M. (2017). SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clinical and Translational Oncology, 20(1), 22-28. doi:10.1007/s12094-017-1763-6 es_ES
dc.description.references WILSON, C. B. (1964). Glioblastoma Multiforme. Archives of Neurology, 11(5), 562. doi:10.1001/archneur.1964.00460230112012 es_ES
dc.description.references Juratli, T. A., Schackert, G., & Krex, D. (2013). Current status of local therapy in malignant gliomas — A clinical review of three selected approaches. Pharmacology & Therapeutics, 139(3), 341-358. doi:10.1016/j.pharmthera.2013.05.003 es_ES
dc.description.references Westphal, M., Hilt, D. C., Bortey, E., Delavault, P., Olivares, R., Warnke, P. C., … Ram, Z. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology, 5(2), 79-88. doi:10.1093/neuonc/5.2.79 es_ES
dc.description.references Chamberlain, M., Rhun, E., & Taillibert, S. (2015). The future of high-grade glioma: Where we are and where are we going. Surgical Neurology International, 6(2), 9. doi:10.4103/2152-7806.151331 es_ES
dc.description.references Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330 es_ES
dc.description.references Lee, C. Y. (2017). Strategies of temozolomide in future glioblastoma treatment. OncoTargets and Therapy, Volume 10, 265-270. doi:10.2147/ott.s120662 es_ES
dc.description.references Mun, E. J., Babiker, H. M., Weinberg, U., Kirson, E. D., & Von Hoff, D. D. (2017). Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clinical Cancer Research, 24(2), 266-275. doi:10.1158/1078-0432.ccr-17-1117 es_ES
dc.description.references Stupp, R., Taillibert, S., Kanner, A., Kesari, S., Toms, S. A., Barnett, G. H., … Ram, Z. (2015). Tumor treating fields (TTFields): A novel treatment modality added to standard chemo- and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. Journal of Clinical Oncology, 33(15_suppl), 2000-2000. doi:10.1200/jco.2015.33.15_suppl.2000 es_ES
dc.description.references Bernard-Arnoux, F., Lamure, M., Ducray, F., Aulagner, G., Honnorat, J., & Armoiry, X. (2016). The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. Neuro-Oncology, 18(8), 1129-1136. doi:10.1093/neuonc/now102 es_ES
dc.description.references Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., … Mirimanoff, R.-O. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology, 10(5), 459-466. doi:10.1016/s1470-2045(09)70025-7 es_ES
dc.description.references Preusser, M., de Ribaupierre, S., Wöhrer, A., Erridge, S. C., Hegi, M., Weller, M., & Stupp, R. (2011). Current concepts and management of glioblastoma. Annals of Neurology, 70(1), 9-21. doi:10.1002/ana.22425 es_ES
dc.description.references FDA Grants Genentech’s Avastin Full Approval for Most Aggressive Form of Brain Cancerhttps://www.gene.com/media/press-releases/14695/2017-12-05/fda-grants-genentechs-avastin-full-appro es_ES
dc.description.references Wick, W., Stupp, R., Gorlia, T., Bendszus, M., Sahm, F., Bromberg, J. E., … Van Den Bent, M. J. (2016). Phase II part of EORTC study 26101: The sequence of bevacizumab and lomustine in patients with first recurrence of a glioblastoma. Journal of Clinical Oncology, 34(15_suppl), 2019-2019. doi:10.1200/jco.2016.34.15_suppl.2019 es_ES
dc.description.references Liu, W.-Y., Wang, Z.-B., Zhang, L.-C., Wei, X., & Li, L. (2012). Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neuroscience & Therapeutics, 18(8), 609-615. doi:10.1111/j.1755-5949.2012.00340.x es_ES
dc.description.references Ronaldson, P. T., & Davis, T. P. (2011). Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Therapeutic Delivery, 2(8), 1015-1041. doi:10.4155/tde.11.67 es_ES
dc.description.references S. Hersh, D., S. Wadajkar, A., B. Roberts, N., G. Perez, J., P. Connolly, N., Frenkel, V., … J. Kim, A. (2016). Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Current Pharmaceutical Design, 22(9), 1177-1193. doi:10.2174/1381612822666151221150733 es_ES
dc.description.references Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., & Amin, A. F. (2009). Getting into the Brain. CNS Drugs, 23(1), 35-58. doi:10.2165/0023210-200923010-00003 es_ES
dc.description.references Clark, D. E. (2003). In silico prediction of blood–brain barrier permeation. Drug Discovery Today, 8(20), 927-933. doi:10.1016/s1359-6446(03)02827-7 es_ES
dc.description.references Gleeson, M. P. (2008). Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. Journal of Medicinal Chemistry, 51(4), 817-834. doi:10.1021/jm701122q es_ES
dc.description.references Hervé, F., Ghinea, N., & Scherrmann, J.-M. (2008). CNS Delivery Via Adsorptive Transcytosis. The AAPS Journal, 10(3), 455-472. doi:10.1208/s12248-008-9055-2 es_ES
dc.description.references Van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger, T., & de Vries, H. E. (2015). Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 19, 1-12. doi:10.1016/j.drup.2015.02.002 es_ES
dc.description.references Ostermann, S. (2004). Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Temozolomide in Malignant Glioma Patients. Clinical Cancer Research, 10(11), 3728-3736. doi:10.1158/1078-0432.ccr-03-0807 es_ES
dc.description.references Laquintana, V., Trapani, A., Denora, N., Wang, F., Gallo, J. M., & Trapani, G. (2009). New strategies to deliver anticancer drugs to brain tumors. Expert Opinion on Drug Delivery, 6(10), 1017-1032. doi:10.1517/17425240903167942 es_ES
dc.description.references Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y., & Lu, W. (2010). Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Journal of Controlled Release, 143(1), 136-142. doi:10.1016/j.jconrel.2009.12.020 es_ES
dc.description.references Kondo, Y., Kondo, S., Tanaka, Y., Haqqi, T., Barna, B. P., & Cowell, J. K. (1998). Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene, 16(17), 2243-2248. doi:10.1038/sj.onc.1201754 es_ES
dc.description.references Wang, P. P., Frazier, J., & Brem, H. (2002). Local drug delivery to the brain. Advanced Drug Delivery Reviews, 54(7), 987-1013. doi:10.1016/s0169-409x(02)00054-6 es_ES
dc.description.references De Souza, R., Zahedi, P., Allen, C. J., & Piquette-Miller, M. (2010). Polymeric drug delivery systems for localized cancer chemotherapy. Drug Delivery, 17(6), 365-375. doi:10.3109/10717541003762854 es_ES
dc.description.references Wolinsky, J. B., Colson, Y. L., & Grinstaff, M. W. (2012). Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. Journal of Controlled Release, 159(1), 14-26. doi:10.1016/j.jconrel.2011.11.031 es_ES
dc.description.references Chakroun, R. W., Zhang, P., Lin, R., Schiapparelli, P., Quinones-Hinojosa, A., & Cui, H. (2017). Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(1), e1479. doi:10.1002/wnan.1479 es_ES
dc.description.references Mathios, D., Kim, J. E., Mangraviti, A., Phallen, J., Park, C.-K., Jackson, C. M., … Lim, M. (2016). Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Science Translational Medicine, 8(370), 370ra180-370ra180. doi:10.1126/scitranslmed.aag2942 es_ES
dc.description.references Chaichana, K. L., Pinheiro, L., & Brem, H. (2015). Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Therapeutic Delivery, 6(3), 353-369. doi:10.4155/tde.14.114 es_ES
dc.description.references Patchell, R. A., Regine, W. F., Ashton, P., Tibbs, P. A., Wilson, D., Shappley, D., & Young, B. (2002). Journal of Neuro-Oncology, 60(1), 37-42. doi:10.1023/a:1020291229317 es_ES
dc.description.references Hassenbusch, S. J., Nardone, E. M., Levin, V. A., Leeds, N., & Pietronigro, D. (2003). Stereotactic Injection of DTI-015 into Recurrent Malignant Gliomas: Phase I/II Trial. Neoplasia, 5(1), 9-16. doi:10.1016/s1476-5586(03)80012-x es_ES
dc.description.references Boiardi, A., Eoli, M., Salmaggi, A., Zappacosta, B., Fariselli, L., Milanesi, I., … Silvani, A. (2001). Journal of Neuro-Oncology, 54(1), 39-47. doi:10.1023/a:1012510513780 es_ES
dc.description.references Lidar, Z., Mardor, Y., Jonas, T., Pfeffer, R., Faibel, M., Nass, D., … Ram, Z. (2004). Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. Journal of Neurosurgery, 100(3), 472-479. doi:10.3171/jns.2004.100.3.0472 es_ES
dc.description.references Bruce, J. N., Fine, R. L., Canoll, P., Yun, J., Kennedy, B. C., Rosenfeld, S. S., … DeLaPaz, R. L. (2011). Regression of Recurrent Malignant Gliomas With Convection-Enhanced Delivery of Topotecan. Neurosurgery, 69(6), 1272-1280. doi:10.1227/neu.0b013e3182233e24 es_ES
dc.description.references Carpentier, A., Metellus, P., Ursu, R., Zohar, S., Lafitte, F., Barrie, M., … Carpentier, A. F. (2010). Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-Oncology, 12(4), 401-408. doi:10.1093/neuonc/nop047 es_ES
dc.description.references Bogdahn, U., Hau, P., Stockhammer, G., Venkataramana, N. K., Mahapatra, A. K., … Suri, A. (2010). Targeted therapy for high-grade glioma with the TGF- 2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology, 13(1), 132-142. doi:10.1093/neuonc/noq142 es_ES
dc.description.references Iwamoto, F. M., Lamborn, K. R., Robins, H. I., Mehta, M. P., Chang, S. M., Butowski, N. A., … Fine, H. A. (2010). Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology, 12(8), 855-861. doi:10.1093/neuonc/noq025 es_ES
dc.description.references Brem, S., Tyler, B., Li, K., Pradilla, G., Legnani, F., Caplan, J., & Brem, H. (2007). Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemotherapy and Pharmacology, 60(5), 643-650. doi:10.1007/s00280-006-0407-2 es_ES
dc.description.references Recinos, V. R., Tyler, B. M., Bekelis, K., Sunshine, S. B., Vellimana, A., Li, K. W., & Brem, H. (2010). Combination of Intracranial Temozolomide With Intracranial Carmustine Improves Survival When Compared With Either Treatment Alone in a Rodent Glioma Model. Neurosurgery, 66(3), 530-537. doi:10.1227/01.neu.0000365263.14725.39 es_ES
dc.description.references Storm, P. B., Moriarity, J. L., Tyler, B., Burger, P. C., Brem, H., & Weingart, J. (2002). Journal of Neuro-Oncology, 56(3), 209-217. doi:10.1023/a:1015003232713 es_ES
dc.description.references Scott, A. W., Tyler, B. M., Masi, B. C., Upadhyay, U. M., Patta, Y. R., Grossman, R., … Cima, M. J. (2011). Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials, 32(10), 2532-2539. doi:10.1016/j.biomaterials.2010.12.020 es_ES
dc.description.references Kim, G. Y., Tyler, B. M., Tupper, M. M., Karp, J. M., Langer, R. S., Brem, H., & Cima, M. J. (2007). Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. Journal of Controlled Release, 123(2), 172-178. doi:10.1016/j.jconrel.2007.08.003 es_ES
dc.description.references Masi, B. C., Tyler, B. M., Bow, H., Wicks, R. T., Xue, Y., Brem, H., … Cima, M. J. (2012). Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials, 33(23), 5768-5775. doi:10.1016/j.biomaterials.2012.04.048 es_ES
dc.description.references Li, X., Tsibouklis, J., Weng, T., Zhang, B., Yin, G., Feng, G., … Mikhalovsky, S. V. (2016). Nano carriers for drug transport across the blood–brain barrier. Journal of Drug Targeting, 25(1), 17-28. doi:10.1080/1061186x.2016.1184272 es_ES
dc.description.references Mangraviti, A., Gullotti, D., Tyler, B., & Brem, H. (2016). Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. Journal of Controlled Release, 240, 443-453. doi:10.1016/j.jconrel.2016.03.031 es_ES
dc.description.references Torchilin, V. P. (2009). Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. Handbook of Experimental Pharmacology, 3-53. doi:10.1007/978-3-642-00477-3_1 es_ES
dc.description.references Rippe, B., Rosengren, B.-I., Carlsson, O., & Venturoli, D. (2002). Transendothelial Transport: The Vesicle Controversy. Journal of Vascular Research, 39(5), 375-390. doi:10.1159/000064521 es_ES
dc.description.references Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., & Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 95(8), 4607-4612. doi:10.1073/pnas.95.8.4607 es_ES
dc.description.references Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 161(2), 175-187. doi:10.1016/j.jconrel.2011.09.063 es_ES
dc.description.references Danhier, F. (2016). To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Journal of Controlled Release, 244, 108-121. doi:10.1016/j.jconrel.2016.11.015 es_ES
dc.description.references Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591 es_ES
dc.description.references Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13(3), 245-255. doi:10.3109/02652049609026013 es_ES
dc.description.references OWENSIII, D., & PEPPAS, N. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93-102. doi:10.1016/j.ijpharm.2005.10.010 es_ES
dc.description.references Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30(12), 2231-2240. doi:10.1016/j.biomaterials.2009.01.005 es_ES
dc.description.references Zhan, C., & Lu, W. (2012). The Blood-Brain/Tumor Barriers: Challenges and Chances for Malignant Gliomas Targeted Drug Delivery. Current Pharmaceutical Biotechnology, 13(12), 2380-2387. doi:10.2174/138920112803341798 es_ES
dc.description.references Steiniger, S. C. J., Kreuter, J., Khalansky, A. S., Skidan, I. N., Bobruskin, A. I., Smirnova, Z. S., … Gelperina, S. E. (2004). Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. International Journal of Cancer, 109(5), 759-767. doi:10.1002/ijc.20048 es_ES
dc.description.references Wohlfart, S., Khalansky, A. S., Bernreuther, C., Michaelis, M., Cinatl, J., Glatzel, M., & Kreuter, J. (2011). Treatment of glioblastoma with poly(isohexyl cyanoacrylate) nanoparticles. International Journal of Pharmaceutics, 415(1-2), 244-251. doi:10.1016/j.ijpharm.2011.05.046 es_ES
dc.description.references Zanotto-Filho, A., Coradini, K., Braganhol, E., Schröder, R., de Oliveira, C. M., Simões-Pires, A., … Moreira, J. C. F. (2013). Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 83(2), 156-167. doi:10.1016/j.ejpb.2012.10.019 es_ES
dc.description.references Gao, H. (2016). Perspectives on Dual Targeting Delivery Systems for Brain Tumors. Journal of Neuroimmune Pharmacology, 12(1), 6-16. doi:10.1007/s11481-016-9687-4 es_ES
dc.description.references Pinto, M. P., Arce, M., Yameen, B., & Vilos, C. (2017). Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine, 12(1), 59-72. doi:10.2217/nnm-2016-0307 es_ES
dc.description.references Fang, C., Wang, K., Stephen, Z. R., Mu, Q., Kievit, F. M., Chiu, D. T., … Zhang, M. (2015). Temozolomide Nanoparticles for Targeted Glioblastoma Therapy. ACS Applied Materials & Interfaces, 7(12), 6674-6682. doi:10.1021/am5092165 es_ES
dc.description.references Ke, W., Shao, K., Huang, R., Han, L., Liu, Y., Li, J., … Jiang, C. (2009). Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30(36), 6976-6985. doi:10.1016/j.biomaterials.2009.08.049 es_ES
dc.description.references Xin, H., Jiang, X., Gu, J., Sha, X., Chen, L., Law, K., … Fang, X. (2011). Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 32(18), 4293-4305. doi:10.1016/j.biomaterials.2011.02.044 es_ES
dc.description.references Zhang, B., Wang, H., Liao, Z., Wang, Y., Hu, Y., Yang, J., … Jiang, X. (2014). EGFP–EGF1-conjugated nanoparticles for targeting both neovascular and glioma cells in therapy of brain glioma. Biomaterials, 35(13), 4133-4145. doi:10.1016/j.biomaterials.2014.01.071 es_ES
dc.description.references Zhang, P., Hu, L., Yin, Q., Feng, L., & Li, Y. (2012). Transferrin-Modified c[RGDfK]-Paclitaxel Loaded Hybrid Micelle for Sequential Blood-Brain Barrier Penetration and Glioma Targeting Therapy. Molecular Pharmaceutics, 9(6), 1590-1598. doi:10.1021/mp200600t es_ES
dc.description.references Ma, D. (2014). Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale, 6(12), 6415. doi:10.1039/c4nr00018h es_ES
dc.description.references Shim, M. S., & Kwon, Y. J. (2012). Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews, 64(11), 1046-1059. doi:10.1016/j.addr.2012.01.018 es_ES
dc.description.references Zarebkohan, A., Najafi, F., Moghimi, H. R., Hemmati, M., Deevband, M. R., & Kazemi, B. (2015). Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. European Journal of Pharmaceutical Sciences, 78, 19-30. doi:10.1016/j.ejps.2015.06.024 es_ES
dc.description.references Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804 es_ES
dc.description.references Nance, E., Timbie, K., Miller, G. W., Song, J., Louttit, C., Klibanov, A. L., … Price, R. J. (2014). Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood − brain barrier using MRI-guided focused ultrasound. Journal of Controlled Release, 189, 123-132. doi:10.1016/j.jconrel.2014.06.031 es_ES
dc.description.references Mead, B. P., Mastorakos, P., Suk, J. S., Klibanov, A. L., Hanes, J., & Price, R. J. (2016). Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. Journal of Controlled Release, 223, 109-117. doi:10.1016/j.jconrel.2015.12.034 es_ES
dc.description.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.description.references Mo, J., He, L., Ma, B., & Chen, T. (2016). Tailoring Particle Size of Mesoporous Silica Nanosystem To Antagonize Glioblastoma and Overcome Blood–Brain Barrier. ACS Applied Materials & Interfaces, 8(11), 6811-6825. doi:10.1021/acsami.5b11730 es_ES
dc.description.references Li, Z.-Y., Liu, Y., Wang, X.-Q., Liu, L.-H., Hu, J.-J., Luo, G.-F., … Zhang, X.-Z. (2013). One-Pot Construction of Functional Mesoporous Silica Nanoparticles for the Tumor-Acidity-Activated Synergistic Chemotherapy of Glioblastoma. ACS Applied Materials & Interfaces, 5(16), 7995-8001. doi:10.1021/am402082d es_ES
dc.description.references Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663. doi:10.1039/c3cs60016e es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 es_ES
dc.description.references Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219 es_ES
dc.description.references Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265 es_ES
dc.description.references Ahmadi Nasab, N., Hassani Kumleh, H., Beygzadeh, M., Teimourian, S., & Kazemzad, M. (2017). Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artificial Cells, Nanomedicine, and Biotechnology, 46(1), 75-81. doi:10.1080/21691401.2017.1290648 es_ES
dc.description.references Huang, X., Zhang, F., Wang, H., Niu, G., Choi, K. Y., Swierczewska, M., … Chen, X. (2013). Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 34(7), 1772-1780. doi:10.1016/j.biomaterials.2012.11.032 es_ES
dc.description.references Cheng, Y., Morshed, R., Cheng, S.-H., Tobias, A., Auffinger, B., Wainwright, D. A., … Lesniak, M. S. (2013). Nanoparticle-Programmed Self-Destructive Neural Stem Cells for Glioblastoma Targeting and Therapy. Small, 9(24), 4123-4129. doi:10.1002/smll.201301111 es_ES
dc.description.references Zhang, H., Zhang, W., Zhou, Y., Jiang, Y., & Li, S. (2017). Dual Functional Mesoporous Silicon Nanoparticles Enhance the Radiosensitivity of VPA in Glioblastoma. Translational Oncology, 10(2), 229-240. doi:10.1016/j.tranon.2016.12.011 es_ES
dc.description.references Roy Chowdhury, M., Schumann, C., Bhakta-Guha, D., & Guha, G. (2016). Cancer nanotheranostics: Strategies, promises and impediments. Biomedicine & Pharmacotherapy, 84, 291-304. doi:10.1016/j.biopha.2016.09.035 es_ES
dc.description.references Lammers, T., Aime, S., Hennink, W. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 1029-1038. doi:10.1021/ar200019c es_ES
dc.description.references Blau, R., Krivitsky, A., Epshtein, Y., & Satchi-Fainaro, R. (2016). Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resistance Updates, 27, 39-58. doi:10.1016/j.drup.2016.06.003 es_ES
dc.description.references Goel, S., Chen, F., Hong, H., Valdovinos, H. F., Hernandez, R., Shi, S., … Cai, W. (2014). VEGF121-Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System. ACS Applied Materials & Interfaces, 6(23), 21677-21685. doi:10.1021/am506849p es_ES
dc.description.references Cheng, S.-H., Yu, D., Tsai, H.-M., Morshed, R. A., Kanojia, D., Lo, L.-W., … Balyasnikova, I. V. (2015). Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal of Nuclear Medicine, 57(2), 279-284. doi:10.2967/jnumed.115.163006 es_ES
dc.description.references Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28-51. doi:10.1016/j.addr.2015.09.012 es_ES
dc.description.references Zhang, C., Nance, E. A., Mastorakos, P., Chisholm, J., Berry, S., Eberhart, C., … Hanes, J. (2017). Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. Journal of Controlled Release, 263, 112-119. doi:10.1016/j.jconrel.2017.03.007 es_ES
dc.description.references Xu, H.-L., Mao, K.-L., Huang, Y.-P., Yang, J.-J., Xu, J., Chen, P.-P., … Zhao, Y.-Z. (2016). Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 8(29), 14222-14236. doi:10.1039/c6nr02448c es_ES
dc.description.references Yoo, B., Ifediba, M. A., Ghosh, S., Medarova, Z., & Moore, A. (2014). Combination Treatment with Theranostic Nanoparticles for Glioblastoma Sensitization to TMZ. Molecular Imaging and Biology, 16(5), 680-689. doi:10.1007/s11307-014-0734-3 es_ES
dc.description.references Ling, Y., Wei, K., Zou, F., & Zhong, S. (2012). Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. International Journal of Pharmaceutics, 430(1-2), 266-275. doi:10.1016/j.ijpharm.2012.03.047 es_ES
dc.description.references Sun, L., Joh, D. Y., Al-Zaki, A., Stangl, M., Murty, S., Davis, J. J., … Dorsey, J. F. (2016). Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme. Journal of Biomedical Nanotechnology, 12(2), 347-356. doi:10.1166/jbn.2016.2173 es_ES
dc.description.references Runge, V. M., Muroff, L. R., & Jinkins, J. R. (2001). Central Nervous System: Review of Clinical Use of Contrast Media. Topics in Magnetic Resonance Imaging, 12(4), 231-263. doi:10.1097/00002142-200108000-00003 es_ES
dc.description.references Štefančíková, L., Lacombe, S., Salado, D., Porcel, E., Pagáčová, E., Tillement, O., … Falk, M. (2016). Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. Journal of Nanobiotechnology, 14(1). doi:10.1186/s12951-016-0215-8 es_ES
dc.description.references He, L., Zeng, L., Mai, X., Shi, C., Luo, L., & Chen, T. (2017). Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma. Journal of Materials Chemistry B, 5(16), 3024-3034. doi:10.1039/c6tb03365b es_ES
dc.description.references Zhou, J., Patel, T. R., Sirianni, R. W., Strohbehn, G., Zheng, M.-Q., Duong, N., … Saltzman, W. M. (2013). Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences, 110(29), 11751-11756. doi:10.1073/pnas.1304504110 es_ES
dc.description.references Çırpanlı, Y., Allard, E., Passirani, C., Bilensoy, E., Lemaire, L., Çalış, S., & Benoit, J.-P. (2011). Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. International Journal of Pharmaceutics, 403(1-2), 201-206. doi:10.1016/j.ijpharm.2010.10.015 es_ES
dc.description.references Larsson, M., Huang, W.-T., Liu, D.-M., & Losic, D. (2017). Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential. Cancer Treatment Reviews, 55, 128-135. doi:10.1016/j.ctrv.2017.03.004 es_ES
dc.description.references Chen, Y., Gao, D.-Y., & Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviews, 81, 128-141. doi:10.1016/j.addr.2014.05.009 es_ES
dc.description.references Mangraviti, A., Tzeng, S. Y., Kozielski, K. L., Wang, Y., Jin, Y., Gullotti, D., … Green, J. J. (2015). Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival in Vivo. ACS Nano, 9(2), 1236-1249. doi:10.1021/nn504905q es_ES
dc.description.references Yu, D., Khan, O. F., Suvà, M. L., Dong, B., Panek, W. K., Xiao, T., … Lesniak, M. S. (2017). Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences, 114(30), E6147-E6156. doi:10.1073/pnas.1701911114 es_ES
dc.description.references Jordan, A., Scholz, R., Maier-Hauff, K., van Landeghem, F. K. H., Waldoefner, N., Teichgraeber, U., … Felix, R. (2005). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 78(1), 7-14. doi:10.1007/s11060-005-9059-z es_ES
dc.description.references Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., … Jordan, A. (2010). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 103(2), 317-324. doi:10.1007/s11060-010-0389-0 es_ES
dc.description.references Le Fèvre, R., Durand-Dubief, M., Chebbi, I., Mandawala, C., Lagroix, F., Valet, J.-P., … Alphandéry, E. (2017). Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics, 7(18), 4618-4631. doi:10.7150/thno.18927 es_ES
dc.description.references Ohtake, M., Umemura, M., Sato, I., Akimoto, T., Oda, K., Nagasako, A., … Ishikawa, Y. (2017). Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Scientific Reports, 7(1). doi:10.1038/srep42783 es_ES
dc.description.references Saito, R., Krauze, M. T., Bringas, J. R., Noble, C., McKnight, T. R., Jackson, P., … Bankiewicz, K. S. (2005). Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Experimental Neurology, 196(2), 381-389. doi:10.1016/j.expneurol.2005.08.016 es_ES
dc.description.references Strohbehn, G., Coman, D., Han, L., Ragheb, R. R. T., Fahmy, T. M., Huttner, A. J., … Zhou, J. (2014). Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal of Neuro-Oncology, 121(3), 441-449. doi:10.1007/s11060-014-1658-0 es_ES
dc.description.references Bernal, G. M., LaRiviere, M. J., Mansour, N., Pytel, P., Cahill, K. E., Voce, D. J., … Yamini, B. (2014). Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 149-157. doi:10.1016/j.nano.2013.07.003 es_ES
dc.description.references Sampson, J. H., Archer, G., Pedain, C., Wembacher-Schröder, E., Westphal, M., Kunwar, S., … __. (2010). Poor drug distribution as a possible explanation for the results of the PRECISE trial. Journal of Neurosurgery, 113(2), 301-309. doi:10.3171/2009.11.jns091052 es_ES
dc.description.references Chiarelli, P., Kievit, F., Zhang, M., & Ellenbogen, R. (2015). Bionanotechnology and the Future of Glioma. Surgical Neurology International, 6(2), 45. doi:10.4103/2152-7806.151334 es_ES
dc.description.references Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20-37. doi:10.1038/nrc.2016.108 es_ES
dc.description.references Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25-38. doi:10.1016/j.addr.2016.04.025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem