Mostrar el registro sencillo del ítem
dc.contributor.author | Nam, L. | es_ES |
dc.contributor.author | Coll Merino, Mª Carmen | es_ES |
dc.contributor.author | Erthal, L.C.S. | es_ES |
dc.contributor.author | De La Torre-Paredes, Cristina | es_ES |
dc.contributor.author | Serrano,D. | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Santos-Martinez, M.J. | es_ES |
dc.contributor.author | Ruiz Hernández, E. | es_ES |
dc.date.accessioned | 2020-05-15T03:03:29Z | |
dc.date.available | 2020-05-15T03:03:29Z | |
dc.date.issued | 2018-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143331 | |
dc.description.abstract | [EN] Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood-brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood-brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma. | es_ES |
dc.description.sponsorship | This research was funded by an Ussher start-up funding award (School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin) and the European Union’s Horizon 2020 research and innovation program under Grant agreement No. 708036. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Drug delivery | es_ES |
dc.subject | Glioblastoma multiforme | es_ES |
dc.subject | Chemotherapy | es_ES |
dc.subject | Local treatment | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Theranostics | es_ES |
dc.subject | Contrast agents | es_ES |
dc.subject | Gene delivery | es_ES |
dc.subject | Mesoporous silica nanoparticles | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Drug delivery nanosystems for the localized treatment of glioblastoma multiforme | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma11050779 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/708036/EU/Development of a chemotherapeutic gel for glioblastoma multiforme treatment/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Nam, L.; Coll Merino, MC.; Erthal, L.; De La Torre-Paredes, C.; Serrano, D.; Martínez-Máñez, R.; Santos-Martinez, M.... (2018). Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials. 11(5). https://doi.org/10.3390/ma11050779 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma11050779 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 29751640 | es_ES |
dc.relation.pasarela | S\363843 | es_ES |
dc.contributor.funder | Trinity College Dublin | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer Genetics, 205(12), 613-621. doi:10.1016/j.cancergen.2012.10.009 | es_ES |
dc.description.references | Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., … Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. doi:10.1007/s00401-007-0243-4 | es_ES |
dc.description.references | Gutkin, A., Cohen, Z. R., & Peer, D. (2016). Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opinion on Drug Delivery, 13(11), 1573-1582. doi:10.1080/17425247.2016.1200557 | es_ES |
dc.description.references | Omuro, A. (2013). Glioblastoma and Other Malignant Gliomas. JAMA, 310(17), 1842. doi:10.1001/jama.2013.280319 | es_ES |
dc.description.references | Wang, Y., & Jiang, T. (2013). Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Letters, 331(2), 139-146. doi:10.1016/j.canlet.2012.12.024 | es_ES |
dc.description.references | Gallego, O. (2015). Nonsurgical treatment of recurrent glioblastoma. Current Oncology, 22(4), 273. doi:10.3747/co.22.2436 | es_ES |
dc.description.references | Carlsson, S. K., Brothers, S. P., & Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 6(11), 1359-1370. doi:10.15252/emmm.201302627 | es_ES |
dc.description.references | Yamasaki, F., Kurisu, K., Satoh, K., Arita, K., Sugiyama, K., Ohtaki, M., … Thohar, M. A. (2005). Apparent Diffusion Coefficient of Human Brain Tumors at MR Imaging. Radiology, 235(3), 985-991. doi:10.1148/radiol.2353031338 | es_ES |
dc.description.references | Gupta, A., Young, R. J., Shah, A. D., Schweitzer, A. D., Graber, J. J., Shi, W., … Omuro, A. M. P. (2014). Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification. Clinical Neuroradiology, 25(2), 143-150. doi:10.1007/s00062-014-0289-3 | es_ES |
dc.description.references | Fakhoury, M. (2015). Drug delivery approaches for the treatment of glioblastoma multiforme. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1365-1373. doi:10.3109/21691401.2015.1052467 | es_ES |
dc.description.references | Štolc, S., Jakubíková, L., & Kukurová, I. (2011). Body distribution of 11C-methionine and 18FDG in rat measured by microPET. Interdisciplinary Toxicology, 4(1). doi:10.2478/v10102-011-0010-1 | es_ES |
dc.description.references | Galldiks, N., Dunkl, V., Kracht, L. W., Vollmar, S., Jacobs, A. H., Fink, G. R., & Schroeter, M. (2012). Volumetry of [11C]-Methionine Positron Emission Tomographic Uptake as a Prognostic Marker before Treatment of Patients with Malignant Glioma. Molecular Imaging, 11(6), 7290.2012.00022. doi:10.2310/7290.2012.00022 | es_ES |
dc.description.references | Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1 | es_ES |
dc.description.references | Martínez-Garcia, M., Álvarez-Linera, J., Carrato, C., Ley, L., Luque, R., Maldonado, X., … Gil-Gil, M. (2017). SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clinical and Translational Oncology, 20(1), 22-28. doi:10.1007/s12094-017-1763-6 | es_ES |
dc.description.references | WILSON, C. B. (1964). Glioblastoma Multiforme. Archives of Neurology, 11(5), 562. doi:10.1001/archneur.1964.00460230112012 | es_ES |
dc.description.references | Juratli, T. A., Schackert, G., & Krex, D. (2013). Current status of local therapy in malignant gliomas — A clinical review of three selected approaches. Pharmacology & Therapeutics, 139(3), 341-358. doi:10.1016/j.pharmthera.2013.05.003 | es_ES |
dc.description.references | Westphal, M., Hilt, D. C., Bortey, E., Delavault, P., Olivares, R., Warnke, P. C., … Ram, Z. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology, 5(2), 79-88. doi:10.1093/neuonc/5.2.79 | es_ES |
dc.description.references | Chamberlain, M., Rhun, E., & Taillibert, S. (2015). The future of high-grade glioma: Where we are and where are we going. Surgical Neurology International, 6(2), 9. doi:10.4103/2152-7806.151331 | es_ES |
dc.description.references | Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330 | es_ES |
dc.description.references | Lee, C. Y. (2017). Strategies of temozolomide in future glioblastoma treatment. OncoTargets and Therapy, Volume 10, 265-270. doi:10.2147/ott.s120662 | es_ES |
dc.description.references | Mun, E. J., Babiker, H. M., Weinberg, U., Kirson, E. D., & Von Hoff, D. D. (2017). Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clinical Cancer Research, 24(2), 266-275. doi:10.1158/1078-0432.ccr-17-1117 | es_ES |
dc.description.references | Stupp, R., Taillibert, S., Kanner, A., Kesari, S., Toms, S. A., Barnett, G. H., … Ram, Z. (2015). Tumor treating fields (TTFields): A novel treatment modality added to standard chemo- and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. Journal of Clinical Oncology, 33(15_suppl), 2000-2000. doi:10.1200/jco.2015.33.15_suppl.2000 | es_ES |
dc.description.references | Bernard-Arnoux, F., Lamure, M., Ducray, F., Aulagner, G., Honnorat, J., & Armoiry, X. (2016). The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. Neuro-Oncology, 18(8), 1129-1136. doi:10.1093/neuonc/now102 | es_ES |
dc.description.references | Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., … Mirimanoff, R.-O. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology, 10(5), 459-466. doi:10.1016/s1470-2045(09)70025-7 | es_ES |
dc.description.references | Preusser, M., de Ribaupierre, S., Wöhrer, A., Erridge, S. C., Hegi, M., Weller, M., & Stupp, R. (2011). Current concepts and management of glioblastoma. Annals of Neurology, 70(1), 9-21. doi:10.1002/ana.22425 | es_ES |
dc.description.references | FDA Grants Genentech’s Avastin Full Approval for Most Aggressive Form of Brain Cancerhttps://www.gene.com/media/press-releases/14695/2017-12-05/fda-grants-genentechs-avastin-full-appro | es_ES |
dc.description.references | Wick, W., Stupp, R., Gorlia, T., Bendszus, M., Sahm, F., Bromberg, J. E., … Van Den Bent, M. J. (2016). Phase II part of EORTC study 26101: The sequence of bevacizumab and lomustine in patients with first recurrence of a glioblastoma. Journal of Clinical Oncology, 34(15_suppl), 2019-2019. doi:10.1200/jco.2016.34.15_suppl.2019 | es_ES |
dc.description.references | Liu, W.-Y., Wang, Z.-B., Zhang, L.-C., Wei, X., & Li, L. (2012). Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neuroscience & Therapeutics, 18(8), 609-615. doi:10.1111/j.1755-5949.2012.00340.x | es_ES |
dc.description.references | Ronaldson, P. T., & Davis, T. P. (2011). Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Therapeutic Delivery, 2(8), 1015-1041. doi:10.4155/tde.11.67 | es_ES |
dc.description.references | S. Hersh, D., S. Wadajkar, A., B. Roberts, N., G. Perez, J., P. Connolly, N., Frenkel, V., … J. Kim, A. (2016). Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Current Pharmaceutical Design, 22(9), 1177-1193. doi:10.2174/1381612822666151221150733 | es_ES |
dc.description.references | Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., & Amin, A. F. (2009). Getting into the Brain. CNS Drugs, 23(1), 35-58. doi:10.2165/0023210-200923010-00003 | es_ES |
dc.description.references | Clark, D. E. (2003). In silico prediction of blood–brain barrier permeation. Drug Discovery Today, 8(20), 927-933. doi:10.1016/s1359-6446(03)02827-7 | es_ES |
dc.description.references | Gleeson, M. P. (2008). Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. Journal of Medicinal Chemistry, 51(4), 817-834. doi:10.1021/jm701122q | es_ES |
dc.description.references | Hervé, F., Ghinea, N., & Scherrmann, J.-M. (2008). CNS Delivery Via Adsorptive Transcytosis. The AAPS Journal, 10(3), 455-472. doi:10.1208/s12248-008-9055-2 | es_ES |
dc.description.references | Van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger, T., & de Vries, H. E. (2015). Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 19, 1-12. doi:10.1016/j.drup.2015.02.002 | es_ES |
dc.description.references | Ostermann, S. (2004). Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Temozolomide in Malignant Glioma Patients. Clinical Cancer Research, 10(11), 3728-3736. doi:10.1158/1078-0432.ccr-03-0807 | es_ES |
dc.description.references | Laquintana, V., Trapani, A., Denora, N., Wang, F., Gallo, J. M., & Trapani, G. (2009). New strategies to deliver anticancer drugs to brain tumors. Expert Opinion on Drug Delivery, 6(10), 1017-1032. doi:10.1517/17425240903167942 | es_ES |
dc.description.references | Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y., & Lu, W. (2010). Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Journal of Controlled Release, 143(1), 136-142. doi:10.1016/j.jconrel.2009.12.020 | es_ES |
dc.description.references | Kondo, Y., Kondo, S., Tanaka, Y., Haqqi, T., Barna, B. P., & Cowell, J. K. (1998). Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene, 16(17), 2243-2248. doi:10.1038/sj.onc.1201754 | es_ES |
dc.description.references | Wang, P. P., Frazier, J., & Brem, H. (2002). Local drug delivery to the brain. Advanced Drug Delivery Reviews, 54(7), 987-1013. doi:10.1016/s0169-409x(02)00054-6 | es_ES |
dc.description.references | De Souza, R., Zahedi, P., Allen, C. J., & Piquette-Miller, M. (2010). Polymeric drug delivery systems for localized cancer chemotherapy. Drug Delivery, 17(6), 365-375. doi:10.3109/10717541003762854 | es_ES |
dc.description.references | Wolinsky, J. B., Colson, Y. L., & Grinstaff, M. W. (2012). Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. Journal of Controlled Release, 159(1), 14-26. doi:10.1016/j.jconrel.2011.11.031 | es_ES |
dc.description.references | Chakroun, R. W., Zhang, P., Lin, R., Schiapparelli, P., Quinones-Hinojosa, A., & Cui, H. (2017). Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(1), e1479. doi:10.1002/wnan.1479 | es_ES |
dc.description.references | Mathios, D., Kim, J. E., Mangraviti, A., Phallen, J., Park, C.-K., Jackson, C. M., … Lim, M. (2016). Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Science Translational Medicine, 8(370), 370ra180-370ra180. doi:10.1126/scitranslmed.aag2942 | es_ES |
dc.description.references | Chaichana, K. L., Pinheiro, L., & Brem, H. (2015). Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Therapeutic Delivery, 6(3), 353-369. doi:10.4155/tde.14.114 | es_ES |
dc.description.references | Patchell, R. A., Regine, W. F., Ashton, P., Tibbs, P. A., Wilson, D., Shappley, D., & Young, B. (2002). Journal of Neuro-Oncology, 60(1), 37-42. doi:10.1023/a:1020291229317 | es_ES |
dc.description.references | Hassenbusch, S. J., Nardone, E. M., Levin, V. A., Leeds, N., & Pietronigro, D. (2003). Stereotactic Injection of DTI-015 into Recurrent Malignant Gliomas: Phase I/II Trial. Neoplasia, 5(1), 9-16. doi:10.1016/s1476-5586(03)80012-x | es_ES |
dc.description.references | Boiardi, A., Eoli, M., Salmaggi, A., Zappacosta, B., Fariselli, L., Milanesi, I., … Silvani, A. (2001). Journal of Neuro-Oncology, 54(1), 39-47. doi:10.1023/a:1012510513780 | es_ES |
dc.description.references | Lidar, Z., Mardor, Y., Jonas, T., Pfeffer, R., Faibel, M., Nass, D., … Ram, Z. (2004). Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. Journal of Neurosurgery, 100(3), 472-479. doi:10.3171/jns.2004.100.3.0472 | es_ES |
dc.description.references | Bruce, J. N., Fine, R. L., Canoll, P., Yun, J., Kennedy, B. C., Rosenfeld, S. S., … DeLaPaz, R. L. (2011). Regression of Recurrent Malignant Gliomas With Convection-Enhanced Delivery of Topotecan. Neurosurgery, 69(6), 1272-1280. doi:10.1227/neu.0b013e3182233e24 | es_ES |
dc.description.references | Carpentier, A., Metellus, P., Ursu, R., Zohar, S., Lafitte, F., Barrie, M., … Carpentier, A. F. (2010). Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-Oncology, 12(4), 401-408. doi:10.1093/neuonc/nop047 | es_ES |
dc.description.references | Bogdahn, U., Hau, P., Stockhammer, G., Venkataramana, N. K., Mahapatra, A. K., … Suri, A. (2010). Targeted therapy for high-grade glioma with the TGF- 2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology, 13(1), 132-142. doi:10.1093/neuonc/noq142 | es_ES |
dc.description.references | Iwamoto, F. M., Lamborn, K. R., Robins, H. I., Mehta, M. P., Chang, S. M., Butowski, N. A., … Fine, H. A. (2010). Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology, 12(8), 855-861. doi:10.1093/neuonc/noq025 | es_ES |
dc.description.references | Brem, S., Tyler, B., Li, K., Pradilla, G., Legnani, F., Caplan, J., & Brem, H. (2007). Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemotherapy and Pharmacology, 60(5), 643-650. doi:10.1007/s00280-006-0407-2 | es_ES |
dc.description.references | Recinos, V. R., Tyler, B. M., Bekelis, K., Sunshine, S. B., Vellimana, A., Li, K. W., & Brem, H. (2010). Combination of Intracranial Temozolomide With Intracranial Carmustine Improves Survival When Compared With Either Treatment Alone in a Rodent Glioma Model. Neurosurgery, 66(3), 530-537. doi:10.1227/01.neu.0000365263.14725.39 | es_ES |
dc.description.references | Storm, P. B., Moriarity, J. L., Tyler, B., Burger, P. C., Brem, H., & Weingart, J. (2002). Journal of Neuro-Oncology, 56(3), 209-217. doi:10.1023/a:1015003232713 | es_ES |
dc.description.references | Scott, A. W., Tyler, B. M., Masi, B. C., Upadhyay, U. M., Patta, Y. R., Grossman, R., … Cima, M. J. (2011). Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials, 32(10), 2532-2539. doi:10.1016/j.biomaterials.2010.12.020 | es_ES |
dc.description.references | Kim, G. Y., Tyler, B. M., Tupper, M. M., Karp, J. M., Langer, R. S., Brem, H., & Cima, M. J. (2007). Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. Journal of Controlled Release, 123(2), 172-178. doi:10.1016/j.jconrel.2007.08.003 | es_ES |
dc.description.references | Masi, B. C., Tyler, B. M., Bow, H., Wicks, R. T., Xue, Y., Brem, H., … Cima, M. J. (2012). Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials, 33(23), 5768-5775. doi:10.1016/j.biomaterials.2012.04.048 | es_ES |
dc.description.references | Li, X., Tsibouklis, J., Weng, T., Zhang, B., Yin, G., Feng, G., … Mikhalovsky, S. V. (2016). Nano carriers for drug transport across the blood–brain barrier. Journal of Drug Targeting, 25(1), 17-28. doi:10.1080/1061186x.2016.1184272 | es_ES |
dc.description.references | Mangraviti, A., Gullotti, D., Tyler, B., & Brem, H. (2016). Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. Journal of Controlled Release, 240, 443-453. doi:10.1016/j.jconrel.2016.03.031 | es_ES |
dc.description.references | Torchilin, V. P. (2009). Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. Handbook of Experimental Pharmacology, 3-53. doi:10.1007/978-3-642-00477-3_1 | es_ES |
dc.description.references | Rippe, B., Rosengren, B.-I., Carlsson, O., & Venturoli, D. (2002). Transendothelial Transport: The Vesicle Controversy. Journal of Vascular Research, 39(5), 375-390. doi:10.1159/000064521 | es_ES |
dc.description.references | Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., & Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 95(8), 4607-4612. doi:10.1073/pnas.95.8.4607 | es_ES |
dc.description.references | Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 161(2), 175-187. doi:10.1016/j.jconrel.2011.09.063 | es_ES |
dc.description.references | Danhier, F. (2016). To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Journal of Controlled Release, 244, 108-121. doi:10.1016/j.jconrel.2016.11.015 | es_ES |
dc.description.references | Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591 | es_ES |
dc.description.references | Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13(3), 245-255. doi:10.3109/02652049609026013 | es_ES |
dc.description.references | OWENSIII, D., & PEPPAS, N. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93-102. doi:10.1016/j.ijpharm.2005.10.010 | es_ES |
dc.description.references | Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30(12), 2231-2240. doi:10.1016/j.biomaterials.2009.01.005 | es_ES |
dc.description.references | Zhan, C., & Lu, W. (2012). The Blood-Brain/Tumor Barriers: Challenges and Chances for Malignant Gliomas Targeted Drug Delivery. Current Pharmaceutical Biotechnology, 13(12), 2380-2387. doi:10.2174/138920112803341798 | es_ES |
dc.description.references | Steiniger, S. C. J., Kreuter, J., Khalansky, A. S., Skidan, I. N., Bobruskin, A. I., Smirnova, Z. S., … Gelperina, S. E. (2004). Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. International Journal of Cancer, 109(5), 759-767. doi:10.1002/ijc.20048 | es_ES |
dc.description.references | Wohlfart, S., Khalansky, A. S., Bernreuther, C., Michaelis, M., Cinatl, J., Glatzel, M., & Kreuter, J. (2011). Treatment of glioblastoma with poly(isohexyl cyanoacrylate) nanoparticles. International Journal of Pharmaceutics, 415(1-2), 244-251. doi:10.1016/j.ijpharm.2011.05.046 | es_ES |
dc.description.references | Zanotto-Filho, A., Coradini, K., Braganhol, E., Schröder, R., de Oliveira, C. M., Simões-Pires, A., … Moreira, J. C. F. (2013). Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 83(2), 156-167. doi:10.1016/j.ejpb.2012.10.019 | es_ES |
dc.description.references | Gao, H. (2016). Perspectives on Dual Targeting Delivery Systems for Brain Tumors. Journal of Neuroimmune Pharmacology, 12(1), 6-16. doi:10.1007/s11481-016-9687-4 | es_ES |
dc.description.references | Pinto, M. P., Arce, M., Yameen, B., & Vilos, C. (2017). Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine, 12(1), 59-72. doi:10.2217/nnm-2016-0307 | es_ES |
dc.description.references | Fang, C., Wang, K., Stephen, Z. R., Mu, Q., Kievit, F. M., Chiu, D. T., … Zhang, M. (2015). Temozolomide Nanoparticles for Targeted Glioblastoma Therapy. ACS Applied Materials & Interfaces, 7(12), 6674-6682. doi:10.1021/am5092165 | es_ES |
dc.description.references | Ke, W., Shao, K., Huang, R., Han, L., Liu, Y., Li, J., … Jiang, C. (2009). Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30(36), 6976-6985. doi:10.1016/j.biomaterials.2009.08.049 | es_ES |
dc.description.references | Xin, H., Jiang, X., Gu, J., Sha, X., Chen, L., Law, K., … Fang, X. (2011). Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 32(18), 4293-4305. doi:10.1016/j.biomaterials.2011.02.044 | es_ES |
dc.description.references | Zhang, B., Wang, H., Liao, Z., Wang, Y., Hu, Y., Yang, J., … Jiang, X. (2014). EGFP–EGF1-conjugated nanoparticles for targeting both neovascular and glioma cells in therapy of brain glioma. Biomaterials, 35(13), 4133-4145. doi:10.1016/j.biomaterials.2014.01.071 | es_ES |
dc.description.references | Zhang, P., Hu, L., Yin, Q., Feng, L., & Li, Y. (2012). Transferrin-Modified c[RGDfK]-Paclitaxel Loaded Hybrid Micelle for Sequential Blood-Brain Barrier Penetration and Glioma Targeting Therapy. Molecular Pharmaceutics, 9(6), 1590-1598. doi:10.1021/mp200600t | es_ES |
dc.description.references | Ma, D. (2014). Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale, 6(12), 6415. doi:10.1039/c4nr00018h | es_ES |
dc.description.references | Shim, M. S., & Kwon, Y. J. (2012). Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews, 64(11), 1046-1059. doi:10.1016/j.addr.2012.01.018 | es_ES |
dc.description.references | Zarebkohan, A., Najafi, F., Moghimi, H. R., Hemmati, M., Deevband, M. R., & Kazemi, B. (2015). Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. European Journal of Pharmaceutical Sciences, 78, 19-30. doi:10.1016/j.ejps.2015.06.024 | es_ES |
dc.description.references | Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804 | es_ES |
dc.description.references | Nance, E., Timbie, K., Miller, G. W., Song, J., Louttit, C., Klibanov, A. L., … Price, R. J. (2014). Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood − brain barrier using MRI-guided focused ultrasound. Journal of Controlled Release, 189, 123-132. doi:10.1016/j.jconrel.2014.06.031 | es_ES |
dc.description.references | Mead, B. P., Mastorakos, P., Suk, J. S., Klibanov, A. L., Hanes, J., & Price, R. J. (2016). Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. Journal of Controlled Release, 223, 109-117. doi:10.1016/j.jconrel.2015.12.034 | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |
dc.description.references | Mo, J., He, L., Ma, B., & Chen, T. (2016). Tailoring Particle Size of Mesoporous Silica Nanosystem To Antagonize Glioblastoma and Overcome Blood–Brain Barrier. ACS Applied Materials & Interfaces, 8(11), 6811-6825. doi:10.1021/acsami.5b11730 | es_ES |
dc.description.references | Li, Z.-Y., Liu, Y., Wang, X.-Q., Liu, L.-H., Hu, J.-J., Luo, G.-F., … Zhang, X.-Z. (2013). One-Pot Construction of Functional Mesoporous Silica Nanoparticles for the Tumor-Acidity-Activated Synergistic Chemotherapy of Glioblastoma. ACS Applied Materials & Interfaces, 5(16), 7995-8001. doi:10.1021/am402082d | es_ES |
dc.description.references | Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663. doi:10.1039/c3cs60016e | es_ES |
dc.description.references | Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d | es_ES |
dc.description.references | De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g | es_ES |
dc.description.references | Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219 | es_ES |
dc.description.references | Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265 | es_ES |
dc.description.references | Ahmadi Nasab, N., Hassani Kumleh, H., Beygzadeh, M., Teimourian, S., & Kazemzad, M. (2017). Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artificial Cells, Nanomedicine, and Biotechnology, 46(1), 75-81. doi:10.1080/21691401.2017.1290648 | es_ES |
dc.description.references | Huang, X., Zhang, F., Wang, H., Niu, G., Choi, K. Y., Swierczewska, M., … Chen, X. (2013). Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 34(7), 1772-1780. doi:10.1016/j.biomaterials.2012.11.032 | es_ES |
dc.description.references | Cheng, Y., Morshed, R., Cheng, S.-H., Tobias, A., Auffinger, B., Wainwright, D. A., … Lesniak, M. S. (2013). Nanoparticle-Programmed Self-Destructive Neural Stem Cells for Glioblastoma Targeting and Therapy. Small, 9(24), 4123-4129. doi:10.1002/smll.201301111 | es_ES |
dc.description.references | Zhang, H., Zhang, W., Zhou, Y., Jiang, Y., & Li, S. (2017). Dual Functional Mesoporous Silicon Nanoparticles Enhance the Radiosensitivity of VPA in Glioblastoma. Translational Oncology, 10(2), 229-240. doi:10.1016/j.tranon.2016.12.011 | es_ES |
dc.description.references | Roy Chowdhury, M., Schumann, C., Bhakta-Guha, D., & Guha, G. (2016). Cancer nanotheranostics: Strategies, promises and impediments. Biomedicine & Pharmacotherapy, 84, 291-304. doi:10.1016/j.biopha.2016.09.035 | es_ES |
dc.description.references | Lammers, T., Aime, S., Hennink, W. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 1029-1038. doi:10.1021/ar200019c | es_ES |
dc.description.references | Blau, R., Krivitsky, A., Epshtein, Y., & Satchi-Fainaro, R. (2016). Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resistance Updates, 27, 39-58. doi:10.1016/j.drup.2016.06.003 | es_ES |
dc.description.references | Goel, S., Chen, F., Hong, H., Valdovinos, H. F., Hernandez, R., Shi, S., … Cai, W. (2014). VEGF121-Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System. ACS Applied Materials & Interfaces, 6(23), 21677-21685. doi:10.1021/am506849p | es_ES |
dc.description.references | Cheng, S.-H., Yu, D., Tsai, H.-M., Morshed, R. A., Kanojia, D., Lo, L.-W., … Balyasnikova, I. V. (2015). Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal of Nuclear Medicine, 57(2), 279-284. doi:10.2967/jnumed.115.163006 | es_ES |
dc.description.references | Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28-51. doi:10.1016/j.addr.2015.09.012 | es_ES |
dc.description.references | Zhang, C., Nance, E. A., Mastorakos, P., Chisholm, J., Berry, S., Eberhart, C., … Hanes, J. (2017). Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. Journal of Controlled Release, 263, 112-119. doi:10.1016/j.jconrel.2017.03.007 | es_ES |
dc.description.references | Xu, H.-L., Mao, K.-L., Huang, Y.-P., Yang, J.-J., Xu, J., Chen, P.-P., … Zhao, Y.-Z. (2016). Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 8(29), 14222-14236. doi:10.1039/c6nr02448c | es_ES |
dc.description.references | Yoo, B., Ifediba, M. A., Ghosh, S., Medarova, Z., & Moore, A. (2014). Combination Treatment with Theranostic Nanoparticles for Glioblastoma Sensitization to TMZ. Molecular Imaging and Biology, 16(5), 680-689. doi:10.1007/s11307-014-0734-3 | es_ES |
dc.description.references | Ling, Y., Wei, K., Zou, F., & Zhong, S. (2012). Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. International Journal of Pharmaceutics, 430(1-2), 266-275. doi:10.1016/j.ijpharm.2012.03.047 | es_ES |
dc.description.references | Sun, L., Joh, D. Y., Al-Zaki, A., Stangl, M., Murty, S., Davis, J. J., … Dorsey, J. F. (2016). Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme. Journal of Biomedical Nanotechnology, 12(2), 347-356. doi:10.1166/jbn.2016.2173 | es_ES |
dc.description.references | Runge, V. M., Muroff, L. R., & Jinkins, J. R. (2001). Central Nervous System: Review of Clinical Use of Contrast Media. Topics in Magnetic Resonance Imaging, 12(4), 231-263. doi:10.1097/00002142-200108000-00003 | es_ES |
dc.description.references | Štefančíková, L., Lacombe, S., Salado, D., Porcel, E., Pagáčová, E., Tillement, O., … Falk, M. (2016). Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. Journal of Nanobiotechnology, 14(1). doi:10.1186/s12951-016-0215-8 | es_ES |
dc.description.references | He, L., Zeng, L., Mai, X., Shi, C., Luo, L., & Chen, T. (2017). Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma. Journal of Materials Chemistry B, 5(16), 3024-3034. doi:10.1039/c6tb03365b | es_ES |
dc.description.references | Zhou, J., Patel, T. R., Sirianni, R. W., Strohbehn, G., Zheng, M.-Q., Duong, N., … Saltzman, W. M. (2013). Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences, 110(29), 11751-11756. doi:10.1073/pnas.1304504110 | es_ES |
dc.description.references | Çırpanlı, Y., Allard, E., Passirani, C., Bilensoy, E., Lemaire, L., Çalış, S., & Benoit, J.-P. (2011). Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. International Journal of Pharmaceutics, 403(1-2), 201-206. doi:10.1016/j.ijpharm.2010.10.015 | es_ES |
dc.description.references | Larsson, M., Huang, W.-T., Liu, D.-M., & Losic, D. (2017). Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential. Cancer Treatment Reviews, 55, 128-135. doi:10.1016/j.ctrv.2017.03.004 | es_ES |
dc.description.references | Chen, Y., Gao, D.-Y., & Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviews, 81, 128-141. doi:10.1016/j.addr.2014.05.009 | es_ES |
dc.description.references | Mangraviti, A., Tzeng, S. Y., Kozielski, K. L., Wang, Y., Jin, Y., Gullotti, D., … Green, J. J. (2015). Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival in Vivo. ACS Nano, 9(2), 1236-1249. doi:10.1021/nn504905q | es_ES |
dc.description.references | Yu, D., Khan, O. F., Suvà, M. L., Dong, B., Panek, W. K., Xiao, T., … Lesniak, M. S. (2017). Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences, 114(30), E6147-E6156. doi:10.1073/pnas.1701911114 | es_ES |
dc.description.references | Jordan, A., Scholz, R., Maier-Hauff, K., van Landeghem, F. K. H., Waldoefner, N., Teichgraeber, U., … Felix, R. (2005). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 78(1), 7-14. doi:10.1007/s11060-005-9059-z | es_ES |
dc.description.references | Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., … Jordan, A. (2010). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 103(2), 317-324. doi:10.1007/s11060-010-0389-0 | es_ES |
dc.description.references | Le Fèvre, R., Durand-Dubief, M., Chebbi, I., Mandawala, C., Lagroix, F., Valet, J.-P., … Alphandéry, E. (2017). Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics, 7(18), 4618-4631. doi:10.7150/thno.18927 | es_ES |
dc.description.references | Ohtake, M., Umemura, M., Sato, I., Akimoto, T., Oda, K., Nagasako, A., … Ishikawa, Y. (2017). Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Scientific Reports, 7(1). doi:10.1038/srep42783 | es_ES |
dc.description.references | Saito, R., Krauze, M. T., Bringas, J. R., Noble, C., McKnight, T. R., Jackson, P., … Bankiewicz, K. S. (2005). Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Experimental Neurology, 196(2), 381-389. doi:10.1016/j.expneurol.2005.08.016 | es_ES |
dc.description.references | Strohbehn, G., Coman, D., Han, L., Ragheb, R. R. T., Fahmy, T. M., Huttner, A. J., … Zhou, J. (2014). Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal of Neuro-Oncology, 121(3), 441-449. doi:10.1007/s11060-014-1658-0 | es_ES |
dc.description.references | Bernal, G. M., LaRiviere, M. J., Mansour, N., Pytel, P., Cahill, K. E., Voce, D. J., … Yamini, B. (2014). Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 149-157. doi:10.1016/j.nano.2013.07.003 | es_ES |
dc.description.references | Sampson, J. H., Archer, G., Pedain, C., Wembacher-Schröder, E., Westphal, M., Kunwar, S., … __. (2010). Poor drug distribution as a possible explanation for the results of the PRECISE trial. Journal of Neurosurgery, 113(2), 301-309. doi:10.3171/2009.11.jns091052 | es_ES |
dc.description.references | Chiarelli, P., Kievit, F., Zhang, M., & Ellenbogen, R. (2015). Bionanotechnology and the Future of Glioma. Surgical Neurology International, 6(2), 45. doi:10.4103/2152-7806.151334 | es_ES |
dc.description.references | Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20-37. doi:10.1038/nrc.2016.108 | es_ES |
dc.description.references | Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25-38. doi:10.1016/j.addr.2016.04.025 | es_ES |