- -

Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils

Mostrar el registro completo del ítem

Bordignon, F.; Tomas-Vidal, A.; Trocino, A.; Milián-Sorribes, MC.; Jover Cerda, M.; Martínez-Llorens, S. (2020). Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils. Animals. 10(2):1-16. https://doi.org/10.3390/ani10020198

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143332

Ficheros en el ítem

Metadatos del ítem

Título: Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils
Autor: Bordignon, Francesco Tomas-Vidal, A. Trocino, Angela Milián-Sorribes, María Consolación Jover Cerda, Miguel Martínez-Llorens, Silvia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The study aimed to evaluate how replacing different proportions of fish oil (FO) with vegetable oils (VO) in the diet of Mediterranean yellowtail, Seriola dumerili (Risso, 1810), affects the fatty acids (FA) signature, ...[+]
Palabras clave: Brain , Muscle , Liver , Greater amberjack , EPA , DHA
Derechos de uso: Reconocimiento (by)
Fuente:
Animals. (eissn: 2076-2615 )
DOI: 10.3390/ani10020198
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ani10020198
Código del Proyecto:
info:eu-repo/grantAgreement/UNIPD//CUP: C26C18000030004/
info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F123/
Agradecimientos:
The Ph.D. grant held by Francesco Bordignon is funded by the ECCEAQUA project (MIUR; CUP: C26C18000030004).
Tipo: Artículo

References

Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K., … Mushiake, K. (2012). Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquaculture Research, n/a-n/a. doi:10.1111/j.1365-2109.2012.03174.x

Grau, A., Riera, F., & Carbonell, E. (1999). Aquaculture International, 7(5), 307-317. doi:10.1023/a:1009212520021

Sicuro, B., & Luzzana, U. (2016). The State ofSeriola spp.Other Than Yellowtail (S. quinqueradiata) Farming in the World. Reviews in Fisheries Science & Aquaculture, 24(4), 314-325. doi:10.1080/23308249.2016.1187583 [+]
Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K., … Mushiake, K. (2012). Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquaculture Research, n/a-n/a. doi:10.1111/j.1365-2109.2012.03174.x

Grau, A., Riera, F., & Carbonell, E. (1999). Aquaculture International, 7(5), 307-317. doi:10.1023/a:1009212520021

Sicuro, B., & Luzzana, U. (2016). The State ofSeriola spp.Other Than Yellowtail (S. quinqueradiata) Farming in the World. Reviews in Fisheries Science & Aquaculture, 24(4), 314-325. doi:10.1080/23308249.2016.1187583

Mazzola, A., Favaloro, E., & Sarà, G. (2000). Cultivation of the Mediterranean amberjack, Seriola dumerili (Risso, 1810), in submerged cages in the Western Mediterranean Sea. Aquaculture, 181(3-4), 257-268. doi:10.1016/s0044-8486(99)00243-4

Jover, M., Garcı́a-Gómez, A., Tomás, A., De la Gándara, F., & Pérez, L. (1999). Growth of mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid. Aquaculture, 179(1-4), 25-33. doi:10.1016/s0044-8486(99)00149-0

Takakuwa, F., Fukada, H., Hosokawa, H., & Masumoto, T. (2006). Optimum digestible protein and energy levels and ratio for greater amberjack Seriola dumerili (Risso) fingerling. Aquaculture Research, 37(15), 1532-1539. doi:10.1111/j.1365-2109.2006.01590.x

Vidal, A. T., De la Gándara García, F., Gómez, A. G., & Cerdá, M. J. (2008). Effect of the protein/energy ratio on the growth of Mediterranean yellowtail (Seriola dumerili). Aquaculture Research, 39(11), 1141-1148. doi:10.1111/j.1365-2109.2008.01975.x

Papadakis, I. E., Chatzifotis, S., Divanach, P., & Kentouri, M. (2007). Weaning of greater amberjack (Seriola dumerilii Risso 1810) juveniles from moist to dry pellet. Aquaculture International, 16(1), 13-25. doi:10.1007/s10499-007-9118-x

Haouas, W. G., Zayene, N., Guerbej, H., Hammami, M., & Achour, L. (2010). Fatty acids distribution in different tissues of wild and reared Seriola dumerili. International Journal of Food Science & Technology, 45(7), 1478-1485. doi:10.1111/j.1365-2621.2010.02292.x

Monge-Ortiz, R., Tomás-Vidal, A., Rodriguez-Barreto, D., Martínez-Llorens, S., Pérez, J. A., Jover-Cerdá, M., & Lorenzo, A. (2017). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition, 24(1), 605-615. doi:10.1111/anu.12595

Mourente, G., Tocher, D. R., & Sargent, J. R. (1991). Specific accumulation of docosahexaenoic acid (22∶6n−3) in brain lipids during development of juvenile turbotScophthalmus maximus L. Lipids, 26(11), 871-877. doi:10.1007/bf02535970

Sargent, J., Bell, G., McEvoy, L., Tocher, D., & Estevez, A. (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 177(1-4), 191-199. doi:10.1016/s0044-8486(99)00083-6

Tocher, D. R., & Harvie, D. G. (1988). Fatty acid compositions of the major phosphoglycerides from fish neural tissues; (n−3) and (n−6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiology and Biochemistry, 5(4), 229-239. doi:10.1007/bf01874800

Bell, J. G., Castell, J. D., Tocher, D. R., MacDonald, F. M., & Sargent, J. R. (1995). Effects of different dietary arachidonic acid : docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot (Scophthalmus maximus). Fish Physiology and Biochemistry, 14(2), 139-151. doi:10.1007/bf00002457

Sargent, J. R., McEvoy, L. A., & Bell, J. G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155(1-4), 117-127. doi:10.1016/s0044-8486(97)00122-1

Tocher, D. R., & Ghioni, C. (1999). Fatty acid metabolism in marine fish: Low activity of fatty acyl Δ5 desaturation in gilthead sea bream (Sparus aurata) cells. Lipids, 34(5), 433-440. doi:10.1007/s11745-999-0382-8

Turchini, G. M., Torstensen, B. E., & Ng, W.-K. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57. doi:10.1111/j.1753-5131.2008.01001.x

Iverson, S. J., Field, C., Don Bowen, W., & Blanchard, W. (2004). QUANTITATIVE FATTY ACID SIGNATURE ANALYSIS: A NEW METHOD OF ESTIMATING PREDATOR DIETS. Ecological Monographs, 74(2), 211-235. doi:10.1890/02-4105

James Henderson, R., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26(4), 281-347. doi:10.1016/0163-7827(87)90002-6

Furuita, H., Takeuchi, T., & Uematsu, K. (1998). Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture, 161(1-4), 269-279. doi:10.1016/s0044-8486(97)00275-5

Anderson, G. J., Connor, W. E., & Corliss, J. D. (1990). Docosahexaenoic Acid Is the Preferred Dietary n-3 Fatty Acid for the Development of the Brain and Retina. Pediatric Research, 27(1), 89-97. doi:10.1203/00006450-199001000-00023

Bianconi, S., Santillán, M. E., Solís, M. del R., Martini, A. C., Ponzio, M. F., Vincenti, L. M., … Stutz, G. (2018). Effects of dietary omega-3 PUFAs on growth and development: Somatic, neurobiological and reproductive functions in a murine model. The Journal of Nutritional Biochemistry, 61, 82-90. doi:10.1016/j.jnutbio.2018.07.007

Thiemann, G. W. (2008). Using fatty acid signatures to study bear foraging: Technical considerations and future applications. Ursus, 19(1), 59-72. doi:10.2192/08per001r.1

Kaushik, S. J., Corraze, G., Radunz-Neto, J., Larroquet, L., & Dumas, J. (2006). Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. Journal of Fish Biology, 68(5), 1376-1387. doi:10.1111/j.0022-1112.2006.01005.x

Stowasser, G., McAllen, R., Pierce, G. J., Collins, M. A., Moffat, C. F., Priede, I. G., & Pond, D. W. (2009). Trophic position of deep-sea fish—Assessment through fatty acid and stable isotope analyses. Deep Sea Research Part I: Oceanographic Research Papers, 56(5), 812-826. doi:10.1016/j.dsr.2008.12.016

Budge, S. M., Penney, S. N., & Lall, S. P. (2012). Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Canadian Journal of Fisheries and Aquatic Sciences, 69(6), 1033-1046. doi:10.1139/f2012-039

Magnone, L., Bessonart, M., Rocamora, M., Gadea, J., & Salhi, M. (2015). Diet estimation of Paralichthys orbignyanus in a coastal lagoon via quantitative fatty acid signature analysis. Journal of Experimental Marine Biology and Ecology, 462, 36-49. doi:10.1016/j.jembe.2014.10.008

Happel, A., Stratton, L., Pattridge, R., Rinchard, J., & Czesny, S. (2016). Fatty‐acid profiles of juvenile lake trout reflect experimental diets consisting of natural prey. Freshwater Biology, 61(9), 1466-1476. doi:10.1111/fwb.12786

Benedito-Palos, L., Navarro, J. C., Kaushik, S., & Pérez-Sánchez, J. (2010). Tissue-specific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil1. Journal of Animal Science, 88(5), 1759-1770. doi:10.2527/jas.2009-2564

O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491

Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. doi:10.1111/j.1365-2109.2008.02150.x

Ishizaki, Y., Masuda, R., Uematsu, K., Shimizu, K., Arimoto, M., & Takeuchi, T. (2001). The effect of dietary docosahexaenoic acid on schooling behaviour and brain development in larval yellowtail. Journal of Fish Biology, 58(6), 1691-1703. doi:10.1111/j.1095-8649.2001.tb02323.x

Furuita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S., & Imaizumi, K. (1996). Requirements of Larval Yellowtail for Eicosapentaenoic Acid, Docosahexaenoic Acid, and n-3 Highly Unsaturated Fatty Acid. Fisheries science, 62(3), 372-379. doi:10.2331/fishsci.62.372

Masuda, R., Takeuchi, T., Tsukamoto, K., Sato, H., Shimizu, K., & Imaizumi, K. (1999). Incorporation of Dietary Docosahexaenoic Acid into the Central Nervous System of the Yellowtail Seriola quinqueradiata. Brain, Behavior and Evolution, 53(4), 173-179. doi:10.1159/000006592

Masuda, R., Takeuchi, T., Tsukamoto, K., Ishizaki, Y., Kanematsu, M., & Imaizum, K. (1998). Critical involvement of dietary docosahexaenoic acid in the ontogeny of schooling behaviour in the yellowtail. Journal of Fish Biology, 53(3), 471-484. doi:10.1111/j.1095-8649.1998.tb00996.x

Masuda, R., & Tsukamoto, K. (1999). Environmental Biology of Fishes, 56(1/2), 243-252. doi:10.1023/a:1007565508398

Mesa-Rodriguez, A., Hernández-Cruz, C. M., Betancor, M. B., Fernández-Palacios, H., Izquierdo, M. S., & Roo, J. (2017). Effect of increasing docosahexaenoic acid content in weaning diets on survival, growth and skeletal anomalies of longfin yellowtail (Seriola rivoliana,Valenciennes 1833). Aquaculture Research, 49(3), 1200-1209. doi:10.1111/are.13573

Nasopoulou, C., & Zabetakis, I. (2012). Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT, 47(2), 217-224. doi:10.1016/j.lwt.2012.01.018

Bowyer, J. N., Qin, J. G., Smullen, R. P., & Stone, D. A. J. (2012). Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture, 356-357, 211-222. doi:10.1016/j.aquaculture.2012.05.014

Bell, J. G., Strachan, F., Good, J. E., & Tocher, D. R. (2006). Effect of dietary echium oil on growth, fatty acid composition and metabolism, gill prostaglandin production and macrophage activity in Atlantic cod (Gadus morhua L.). Aquaculture Research, 37(6), 606-617. doi:10.1111/j.1365-2109.2006.01470.x

Stoknes, I. S., Økland, H. M. W., Falch, E., & Synnes, M. (2004). Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 138(2), 183-191. doi:10.1016/j.cbpc.2004.03.009

Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2012). Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili). Aquaculture, 360-361, 1-9. doi:10.1016/j.aquaculture.2012.07.013

Benedito-Palos, L., Navarro, J. C., Sitjà-Bobadilla, A., Gordon Bell, J., Kaushik, S., & Pérez-Sánchez, J. (2008). High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. British Journal of Nutrition, 100(5), 992-1003. doi:10.1017/s0007114508966071

Piedecausa, M. A., Mazón, M. J., García García, B., & Hernández, M. D. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263(1-4), 211-219. doi:10.1016/j.aquaculture.2006.09.039

Richard, N., Mourente, G., Kaushik, S., & Corraze, G. (2006). Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture, 261(3), 1077-1087. doi:10.1016/j.aquaculture.2006.07.021

BOURAOUI, L., SÁNCHEZ-GURMACHES, J., CRUZ-GARCIA, L., GUTIÉRREZ, J., BENEDITO-PALOS, L., PÉREZ-SÁNCHEZ, J., & NAVARRO, I. (2010). Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 17(1), 54-63. doi:10.1111/j.1365-2095.2009.00706.x

Regost, C., Arzel, J., Robin, J., Rosenlund, G., & Kaushik, S. . (2003). Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima). Aquaculture, 217(1-4), 465-482. doi:10.1016/s0044-8486(02)00259-4

Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2001). Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. The Journal of Nutrition, 131(5), 1535-1543. doi:10.1093/jn/131.5.1535

Bell, J. G., & Sargent, J. R. (2003). Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 218(1-4), 491-499. doi:10.1016/s0044-8486(02)00370-8

Torstensen, B. E., Froyland, L., & Lie, O. (2004). Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil - effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquaculture Nutrition, 10(3), 175-192. doi:10.1111/j.1365-2095.2004.00289.x

Saito, H. (2012). Lipid characteristics of two subtropical Seriola fishes, Seriola dumerili and Seriola rivoliana, with differences between cultured and wild varieties. Food Chemistry, 135(3), 1718-1729. doi:10.1016/j.foodchem.2012.05.122

Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2015). Effect of different rearing conditions on body lipid composition of greater amberjack broodstock (Seriola dumerili ). Aquaculture Research, 48(2), 505-520. doi:10.1111/are.12898

Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2014). Ovary and egg fatty acid composition of greater amberjack broodstock (Seriola dumerili) fed different dietary fatty acids profiles. European Journal of Lipid Science and Technology, 116(5), 584-595. doi:10.1002/ejlt.201300462

O’Neill, B., Le Roux, A., & Hoffman, L. C. (2015). Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi). Aquaculture, 448, 169-175. doi:10.1016/j.aquaculture.2015.05.034

Rombenso, A. N., Trushenski, J. T., & Drawbridge, M. (2018). Saturated lipids are more effective than others in juvenile California yellowtail feeds—Understanding and harnessing LC-PUFA sparing for fish oil replacement. Aquaculture, 493, 192-203. doi:10.1016/j.aquaculture.2018.04.040

SENO-O, A., TAKAKUWA, F., HASHIGUCHI, T., MORIOKA, K., MASUMOTO, T., & FUKADA, H. (2008). Replacement of dietary fish oil with olive oil in young yellowtailSeriola quinqueradiata: effects on growth, muscular fatty acid composition and prevention of dark muscle discoloration during refrigerated storage. Fisheries Science, 74(6), 1297-1306. doi:10.1111/j.1444-2906.2008.01655.x

Fukada, H., Taniguchi, E., Morioka, K., & Masumoto, T. (2017). Effects of replacing fish oil with canola oil on the growth performance, fatty acid composition and metabolic enzyme activity of juvenile yellowtail Seriola quinqueradiata (Temminck & Schlegel, 1845). Aquaculture Research, 48(12), 5928-5939. doi:10.1111/are.13416

Bergman, A. M., Trushenski, J. T., & Drawbridge, M. (2018). Replacing Fish Oil with Hydrogenated Soybean Oils in Feeds for Yellowtail. North American Journal of Aquaculture, 80(2), 141-152. doi:10.1002/naaq.10015

Stuart, K., Johnson, R., Armbruster, L., & Drawbridge, M. (2018). Arachidonic Acid in the Diet of Captive Yellowtail and Its Effects on Egg Quality. North American Journal of Aquaculture, 80(1), 97-106. doi:10.1002/naaq.10003

Bell, J. G., McGhee, F., Campbell, P. J., & Sargent, J. R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil «wash out». Aquaculture, 218(1-4), 515-528. doi:10.1016/s0044-8486(02)00462-3

STUBHAUG, I., LIE, Ø., & TORSTENSEN, B. E. (2007). Fatty acid productive value and ?-oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition, 13(2), 145-155. doi:10.1111/j.1365-2095.2007.00462.x

Ikemoto, A., Nitta, A., Furukawa, S., Ohishi, M., Nakamura, A., Fujii, Y., & Okuyama, H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neuroscience Letters, 285(2), 99-102. doi:10.1016/s0304-3940(00)01035-1

Kitajka, K., Puskas, L. G., Zvara, A., Hackler, L., Barcelo-Coblijn, G., Yeo, Y. K., & Farkas, T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences, 99(5), 2619-2624. doi:10.1073/pnas.042698699

Kreps, E. ., Chebotarëva, M. ., & Akulin, V. . (1969). Fatty acid composition of brain and body phospholipids of the anadromous salmon, Oncorhynchus nerka, From fresh-water and marine habitat. Comparative Biochemistry and Physiology, 31(3), 419-430. doi:10.1016/0010-406x(69)90023-1

Caballero, M. ., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. . (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271. doi:10.1016/s0044-8486(01)00852-3

Campos, I., Matos, E., Maia, M. R. G., Marques, A., & Valente, L. M. P. (2019). Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture, 502, 107-120. doi:10.1016/j.aquaculture.2018.12.004

Pagliarani, A., Pirini, M., Trigari, G., & Ventrella, V. (1986). Effect of diets containing different oils on brain fatty acid composition in sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(2), 277-282. doi:10.1016/0305-0491(86)90366-4

Skalli, A., Robin, J. H., Le Bayon, N., Le Delliou, H., & Person-Le Ruyet, J. (2006). Impact of essential fatty acid deficiency and temperature on tissues’ fatty acid composition of European sea bass (Dicentrarchus labrax). Aquaculture, 255(1-4), 223-232. doi:10.1016/j.aquaculture.2005.12.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem