Mostrar el registro sencillo del ítem
dc.contributor.author | PASCUAL, L | es_ES |
dc.contributor.author | Yan, Jinqiang | es_ES |
dc.contributor.author | Pujol, Marta | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.contributor.author | MARTIN HERNANDEZ, A.M. | es_ES |
dc.date.accessioned | 2020-05-19T03:02:19Z | |
dc.date.available | 2020-05-19T03:02:19Z | |
dc.date.issued | 2019-10-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143614 | |
dc.description.abstract | [EN] Melon production is often compromised by viral diseases, which cannot be treated with chemicals. Therefore, the use of genetic resistances is the main strategy for generating crops resistant to viruses. Resistance to Cucumber mosaic virus (CMV) in melon is scarcely described in few accessions. Until recently, the only known resistant accessions were Freeman¿s Cucumber and PI 161375, cultivar Songwhan Charmi (SC). Resistance to CMV in melon is recessive and generally oligogenic and quantitative. However, in SC, the resistance to CMV strains of subgroup II is monogenic, depending only on one gene, cmv1, which is able to stop CMV movement by restricting the virus to the bundle sheath cells and preventing a systemic infection. This restriction depends on the viral movement protein (MP). Chimeric viruses carrying the MP of subgroup II strains, like the strain LS (CMV-LS), are restricted in the bundle sheath cells, whereas those carrying MP from subgroup I, like the strain FNY (CMV-FNY), are able to overcome this restriction. cmv1 encodes a vacuolar protein sorting 41 (CmVPS41), a protein involved in the transport of cargo proteins from the Golgi to the vacuole through late endosomes. We have analyzed the variability of the gene CmVPS41 in a set of 52 melon accessions belonging to 15 melon groups, both from the spp melo and the spp agrestis. We have identified 16 different haplotypes, encoding 12 different CmVPS41 protein variants. Challenging members of all haplotypes with CMV-LS, we have identified nine new resistant accessions. The resistance correlates with the presence of two mutations, either L348R, previously found in the accession SC and present in other three melon genotypes, or G85E, present in Freeman¿s Cucumber and found also in four additional melon genotypes. Moreover, the new resistant accessions belong to three different melon horticultural groups, Conomon, Makuwa, and Dudaim. In the new resistant accessions, the virus was able to replicate and move cell to cell, but was not able to reach the phloem. Therefore, resistance to phloem entry seems to be a general strategy in melon controlled by CmVPS41. Finally, the newly reported resistant accessions broaden the possibilities for the use of genetic resistances in new melon breeding strategies. | es_ES |
dc.description.sponsorship | AM-H was supported by the grants AGL2012-40130-C02-01 and AGL2015-64625-C2-1-R from the Spanish Ministry of Economy and Competitiviness (cofunded by FEDER funds) and by the CERCA Proframme/Generalitat de Catalunya. We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533). AM was supported by grant AGL2015-64625-C2-2-R from the Spanish Ministry of Economy and Competitivity. Grants AGL2017-85563-C2-1-R by the Spanish Ministery of Science, Innovation and Universities (cofunded with FEDER funds) and by the PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura i Esports (Generalitat Valenciana) were supporting BP. JY was supported by a China Scholarship Council (CSC) fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Melon | es_ES |
dc.subject | Genetic diversity | es_ES |
dc.subject | VPS41 | es_ES |
dc.subject | Cucumber mosaic virus | es_ES |
dc.subject | Resistance | es_ES |
dc.subject | Phloem loading | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | CmVPS41 Is a General Gatekeeper for Resistance to Cucumber Mosaic Virus Phloem Entry in Melon | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2019.01219 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-40130-C02-01/ES/DISECCION GENETICA DE CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CMV Y MADURACION CLIMATERICA DE FRUTO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-2-R/ES/EVOLUCION Y DIVERSIFICACION EN CUCUMIS. GENETICA DE LA DOMESTICACION, MORFOLOGIA DE FRUTO Y BARRERAS REPRODUCTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F078/ES/Selección de variedades tradicionales y desarrollo de nuevas variedades de cucurbitáceas adaptadas a la producción ecológica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Pascual, L.; Yan, J.; Pujol, M.; Monforte Gilabert, AJ.; Picó Sirvent, MB.; Martin Hernandez, A. (2019). CmVPS41 Is a General Gatekeeper for Resistance to Cucumber Mosaic Virus Phloem Entry in Melon. Frontiers in Plant Science. 10:1-11. https://doi.org/10.3389/fpls.2019.01219 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2019.01219 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 31632432 | es_ES |
dc.identifier.pmcid | PMC6781857 | es_ES |
dc.relation.pasarela | S\406596 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Centres de Recerca de Catalunya | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323 | es_ES |
dc.description.references | Asensio, C. S., Sirkis, D. W., Maas, J. W., Egami, K., To, T.-L., Brodsky, F. M., … Edwards, R. H. (2013). Self-Assembly of VPS41 Promotes Sorting Required for Biogenesis of the Regulated Secretory Pathway. Developmental Cell, 27(4), 425-437. doi:10.1016/j.devcel.2013.10.007 | es_ES |
dc.description.references | Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37-48. doi:10.1093/oxfordjournals.molbev.a026036 | es_ES |
dc.description.references | Blanca, J., Esteras, C., Ziarsolo, P., Pérez, D., Fernández-Pedrosa, V., Collado, C., … Picó, B. (2012). Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics, 13(1), 280. doi:10.1186/1471-2164-13-280 | es_ES |
dc.description.references | Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., … Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140-1153. doi:10.1111/mpp.12375 | es_ES |
dc.description.references | Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE, 7(10), e46688. doi:10.1371/journal.pone.0046688 | es_ES |
dc.description.references | Dhillon, N. P. S., Ranjana, R., Singh, K., Eduardo, I., Monforte, A. J., Pitrat, M., … Singh, P. P. (2006). Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genetic Resources and Crop Evolution, 54(6), 1267-1283. doi:10.1007/s10722-006-9108-2 | es_ES |
dc.description.references | Díaz, J. A., Mallor, C., Soria, C., Camero, R., Garzo, E., Fereres, A., … Moriones, E. (2003). Potential Sources of Resistance for Melon to Nonpersistently Aphid-borne Viruses. Plant Disease, 87(8), 960-964. doi:10.1094/pdis.2003.87.8.960 | es_ES |
dc.description.references | Dogimont, C., Leconte, L., Périn, C., Thabuis, A., Lecoq, H., & Pitrat, M. (2000). IDENTIFICATION OF QTLS CONTRIBUTING TO RESISTANCE TO DIFFERENT STRAINS OF CUCUMBER MOSAIC CUCUMOVIRUS IN MELON. Acta Horticulturae, (510), 391-398. doi:10.17660/actahortic.2000.510.62 | es_ES |
dc.description.references | Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172 | es_ES |
dc.description.references | Essafi, A., Díaz-Pendón, J. A., Moriones, E., Monforte, A. J., Garcia-Mas, J., & Martín-Hernández, A. M. (2008). Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theoretical and Applied Genetics, 118(2), 275-284. doi:10.1007/s00122-008-0897-x | es_ES |
dc.description.references | Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5 | es_ES |
dc.description.references | Fergany, M., Kaur, B., Monforte, A. J., Pitrat, M., Rys, C., Lecoq, H., … Dhaliwal, S. S. (2010). Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genetic Resources and Crop Evolution, 58(2), 225-243. doi:10.1007/s10722-010-9564-6 | es_ES |
dc.description.references | Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Picó, B., … Martín-Hernández, A. M. (2017). A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Scientific Reports, 7(1). doi:10.1038/s41598-017-10783-3 | es_ES |
dc.description.references | Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0 | es_ES |
dc.description.references | Guiu-Aragonés, C., Díaz-Pendón, J. A., & Martín-Hernández, A. M. (2015). Four sequence positions of the movement protein ofCucumber mosaic virusdetermine the virulence againstcmv1-mediated resistance in melon. Molecular Plant Pathology, 16(7), 675-684. doi:10.1111/mpp.12225 | es_ES |
dc.description.references | Guiu-Aragonés, C., Monforte, A. J., Saladié, M., Corrêa, R. X., Garcia-Mas, J., & Martín-Hernández, A. M. (2014). The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Molecular Breeding, 34(2), 351-362. doi:10.1007/s11032-014-0038-y | es_ES |
dc.description.references | Guiu‐Aragonés, C., Sánchez‐Pina, M. A., Díaz‐Pendón, J. A., Peña, E. J., Heinlein, M., & Martín‐Hernández, A. M. (2016). cmv1 is a gate for Cucumber mosaic virus transport from bundle sheath cells to phloem in melon. Molecular Plant Pathology, 17(6), 973-984. doi:10.1111/mpp.12351 | es_ES |
dc.description.references | Hashimoto, M., Neriya, Y., Yamaji, Y., & Namba, S. (2016). Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01695 | es_ES |
dc.description.references | HIRAI, S., & AMEMIYA, Y. (1989). Studies on the resistance of melon cultivars to cucumber mosaic virus. (I). Virus multiplication in leaves or mesophyll protoplasts from a susceptible and a resistant cultivars. Japanese Journal of Phytopathology, 55(4), 458-465. doi:10.3186/jjphytopath.55.458 | es_ES |
dc.description.references | Karchi, Z. (1975). Inheritance of Resistance to Cucumber Mosaic Virus in Melons. Phytopathology, 65(4), 479. doi:10.1094/phyto-65-479 | es_ES |
dc.description.references | Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2 | es_ES |
dc.description.references | Leigh, J. W., & Bryant, D. (2015). Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments. Systematic Biology, 64(5), 741-751. doi:10.1093/sysbio/syv030 | es_ES |
dc.description.references | Malik, A. A., Vashisht, V. K., Singh, K., Sharma, A., Singh, D. K., Singh, H., … Dhillon, N. P. S. (2014). Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with USA melon cultivars. Genetic Resources and Crop Evolution, 61(6), 1189-1208. doi:10.1007/s10722-014-0101-x | es_ES |
dc.description.references | Niihama, M., Takemoto, N., Hashiguchi, Y., Tasaka, M., & Morita, M. T. (2009). ZIP Genes Encode Proteins Involved in Membrane Trafficking of the TGN–PVC/Vacuoles. Plant and Cell Physiology, 50(12), 2057-2068. doi:10.1093/pcp/pcp137 | es_ES |
dc.description.references | Perchepied, L., & Pitrat, M. (2004). Polygenic Inheritance of Partial Resistance to Fusarium oxysporum f. sp. melonis Race 1.2 in Melon. Phytopathology®, 94(12), 1331-1336. doi:10.1094/phyto.2004.94.12.1331 | es_ES |
dc.description.references | Pitrat, M. (s. f.). Melon. Vegetables I, 283-315. doi:10.1007/978-0-387-30443-4_9 | es_ES |
dc.description.references | Pitrat, M. (1980). Inheritance of Resistance to Cucumber Mosaic Virus Transmission byAphis gossypiiinCucumis melo. Phytopathology, 70(10), 958. doi:10.1094/phyto-70-958 | es_ES |
dc.description.references | Pols, M. S., ten Brink, C., Gosavi, P., Oorschot, V., & Klumperman, J. (2012). The HOPS Proteins hVps41 and hVps39 Are Required for Homotypic and Heterotypic Late Endosome Fusion. Traffic, 14(2), 219-232. doi:10.1111/tra.12027 | es_ES |
dc.description.references | RODRÍGUEZ-HERNÁNDEZ, A. M., GOSALVEZ, B., SEMPERE, R. N., BURGOS, L., ARANDA, M. A., & TRUNIGER, V. (2012). Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Molecular Plant Pathology, 13(7), 755-763. doi:10.1111/j.1364-3703.2012.00785.x | es_ES |
dc.description.references | Roig, C., Fita, A., Ríos, G., Hammond, J. P., Nuez, F., & Picó, B. (2012). Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics, 13(1), 601. doi:10.1186/1471-2164-13-601 | es_ES |
dc.description.references | Roossinck, M. J. (2001). Cucumber mosaic virus , a model for RNA virus evolution. Molecular Plant Pathology, 2(2), 59-63. doi:10.1046/j.1364-3703.2001.00058.x | es_ES |
dc.description.references | Sabato, D., Esteras, C., Grillo, O., Peña-Chocarro, L., Leida, C., Ucchesu, M., … Picó, B. (2017). Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeological and Anthropological Sciences, 11(3), 789-810. doi:10.1007/s12520-017-0560-z | es_ES |
dc.description.references | Sanfaçon, H. (2015). Plant Translation Factors and Virus Resistance. Viruses, 7(7), 3392-3419. doi:10.3390/v7072778 | es_ES |
dc.description.references | Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152 | es_ES |
dc.description.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 | es_ES |
dc.description.references | Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115-e115. doi:10.1093/nar/gks596 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |