- -

Engineered Male Sterility by Early Anther Ablation Using the Pea Anther-Specific Promoter PsEND1

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineered Male Sterility by Early Anther Ablation Using the Pea Anther-Specific Promoter PsEND1

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roque Mesa, Edelin Marta es_ES
dc.contributor.author Gómez Mena, María Concepción es_ES
dc.contributor.author Hamza, Rim es_ES
dc.contributor.author BELTRAN PORTER, JOSE PIO es_ES
dc.contributor.author Cañas Clemente, Luís Antonio es_ES
dc.date.accessioned 2020-05-19T03:02:28Z
dc.date.available 2020-05-19T03:02:28Z
dc.date.issued 2019-06-25 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143617
dc.description.abstract [EN] Genetic engineered male sterility has different applications, ranging from hybrid seed production to bioconfinement of transgenes in genetic modified crops. The impact of this technology is currently patent in a wide range of crops, including legumes, which has helped to deal with the challenges of global food security. Production of engineered male sterile plants by expression of a ribonuclease gene under the control of an anther- or pollen-specific promoter has proven to be an efficient way to generate pollen-free elite cultivars. In the last years, we have been studying the genetic control of flower development in legumes and several genes that are specifically expressed in a determinate floral organ were identified. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene displaying very early expression in the anther primordium cells. This expression pattern has been assessed in both model plants and crops (tomato, tobacco, oilseed rape, rice, wheat) using genetic constructs carrying the PsEND1 promoter fused to the uidA reporter gene. This promoter fused to the barnase gene produces full anther ablation at early developmental stages, preventing the production of mature pollen grains in all plant species tested. Additional effects produced by the early anther ablation in the PsEND1::barnase-barstar plants, with interesting biotechnological applications, have also been described, such as redirection of resources to increase vegetative growth, reduction of the need for deadheading to extend the flowering period, or elimination of pollen allergens in ornamental plants (Kalanchoe, Pelargonium). Moreover, early anther ablation in transgenic PsEND1::barnase-barstar tomato plants promotes the developing of the ovaries into parthenocarpic fruits due to the absence of signals generated during the fertilization process and can be considered an efficient tool to promote fruit set and to produce seedless fruits. In legumes, the production of new hybrid cultivars will contribute to enhance yield and productivity by exploiting the hybrid vigor generated. The PsEND1::barnase-barstar construct could be also useful to generate parental lines in hybrid breeding approaches to produce new cultivars in different legume species. es_ES
dc.description.sponsorship This work was funded by grants BIO2000-0940, BIO2000-0940, BIO2003-01171, BIO2006-09374, PTR95-0979-OP-03-01, RYC-2007-00627, AGL2009-13388-C03-01, AGL2009-07617, BIO2009-08134, AGL2015-64991-C3-3-R, and BIO2016-75485-R from the Spanish Ministry of Economy and Competitiveness (MINECO). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bamase es_ES
dc.subject Hybrid seeds es_ES
dc.subject Male sterility es_ES
dc.subject Parthenocarpy es_ES
dc.subject Pisum sativum es_ES
dc.subject Pollen allergens es_ES
dc.subject PsEND1 promoter es_ES
dc.subject Transgene bioconfinement es_ES
dc.title Engineered Male Sterility by Early Anther Ablation Using the Pea Anther-Specific Promoter PsEND1 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2019.00819 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//BIO2000-0940/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//PTR95-0979-OP-03-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//RYC-2007-00627/ES/RYC-2007-00627/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-13388-C03-01/ES/Generacion De Mutantes De Insercion De Tomate Cultivado Y Silvestre E Identificacion De Genes Implicados En Procesos Del Desarrollo Y Tolerancia A Estres Abiotico/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-3-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO - ESTRES ABIOTICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//BIO2003-01171/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIO2006-09374/ES/ANALISIS GENETICO Y FUNCIONAL DEL DESARROLLO FLORAL EN MEDICAGO TRUNCATULA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-08134/ES/Mejora Del Valor Nutritivo De La Alfalfa (Medicago Sativa L.) Mediante Ingenieria Genetica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-07617/ES/Analisis Genetico De La Androesterilidad Como Herramienta Para La Mejora Del Cuajado Y La Calidad Del Fruto De Variedades Comerciales De Tomate./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-75485-R/ES/CONTROL GENETICO DEL DESARROLLO FLORAL EN LAS LEGUMINOSAS: PAPEL DE LOS GENES CATASTRALES EN LA FORMACION DE LOS ORGANOS REPRODUCTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Roque Mesa, EM.; Gómez Mena, MC.; Hamza, R.; Beltran Porter, JP.; Cañas Clemente, LA. (2019). Engineered Male Sterility by Early Anther Ablation Using the Pea Anther-Specific Promoter PsEND1. Frontiers in Plant Science. 10:1-9. https://doi.org/10.3389/fpls.2019.00819 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2019.00819 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 31293612 es_ES
dc.identifier.pmcid PMC6603094 es_ES
dc.relation.pasarela S\406615 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Beals, T. P., & Goldberg, R. B. (1997). A novel cell ablation strategy blocks tobacco anther dehiscence. The Plant Cell, 9(9), 1527-1545. doi:10.1105/tpc.9.9.1527 es_ES
dc.description.references Canales, C., Bhatt, A. M., Scott, R., & Dickinson, H. (2002). EXS, a Putative LRR Receptor Kinase, Regulates Male Germline Cell Number and Tapetal Identity and Promotes Seed Development in Arabidopsis. Current Biology, 12(20), 1718-1727. doi:10.1016/s0960-9822(02)01151-x es_ES
dc.description.references Ca�as, L. A., Essid, R., G�mez, M. D., & Beltr�n, J. (2002). Monoclonal antibodies as developmental markers to characterize pea floral homeotic transformations. Sexual Plant Reproduction, 15(3), 141-152. doi:10.1007/s00497-002-0148-2 es_ES
dc.description.references Christensen, B., Sriskandarajah, S., Serek, M., & Müller, R. (2008). Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Reports, 27(9), 1485-1495. doi:10.1007/s00299-008-0575-0 es_ES
dc.description.references Block, M. D., Debrouwer, D., & Moens, T. (1997). The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theoretical and Applied Genetics, 95(1-2), 125-131. doi:10.1007/s001220050540 es_ES
dc.description.references Denis, M., Delourme, R., Gourret, J. P., Mariani, C., & Renard, M. (1993). Expression of Engineered Nuclear Male Sterility in Brassica napus (Genetics, Morphology, Cytology, and Sensitivity to Temperature). Plant Physiology, 101(4), 1295-1304. doi:10.1104/pp.101.4.1295 es_ES
dc.description.references Dutt, M., Dhekney, S. A., Soriano, L., Kandel, R., & Grosser, J. W. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1(1). doi:10.1038/hortres.2014.47 es_ES
dc.description.references García-Sogo, B., Pineda, B., Castelblanque, L., Antón, T., Medina, M., Roque, E., … Cañas, L. A. (2009). Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Reports, 29(1), 61-77. doi:10.1007/s00299-009-0798-8 es_ES
dc.description.references García-Sogo, B., Pineda, B., Roque, E., Antón, T., Atarés, A., Borja, M., … Cañas, L. (2012). Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biology, 12(1), 156. doi:10.1186/1471-2229-12-156 es_ES
dc.description.references Gardner, N., Felsheim, R., & Smith, A. G. (2009). Production of male- and female-sterile plants through reproductive tissue ablation. Journal of Plant Physiology, 166(8), 871-881. doi:10.1016/j.jplph.2008.10.002 es_ES
dc.description.references Goldberg, A., Confino-Cohen, R., & Waisel, Y. (1998). Allergic responses to pollen of ornamental plants: High incidence in the general atopic population and especially among flower growers. Journal of Allergy and Clinical Immunology, 102(2), 210-214. doi:10.1016/s0091-6749(98)70088-0 es_ES
dc.description.references G�mez, M. D., Beltr�n, J.-P., & Ca�as, L. A. (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219(6), 967-981. doi:10.1007/s00425-004-1300-z es_ES
dc.description.references Harris, N., & Croy, R. R. D. (1985). The major albumin protein from pea (Pisum sativum L.). Planta, 165(4), 522-526. doi:10.1007/bf00398098 es_ES
dc.description.references Hartley, R. W. (1988). Barnase and barstar. Journal of Molecular Biology, 202(4), 913-915. doi:10.1016/0022-2836(88)90568-2 es_ES
dc.description.references Higgins, T. J. V., Beach, L. R., Spencer, D., Chandler, P. M., Randall, P. J., Blagrove, R. J., … Guthrie, R. E. (1987). cDNA and protein sequence of a major pea seed albumin (PA 2 : Mr?26 000). Plant Molecular Biology, 8(1), 37-45. doi:10.1007/bf00016432 es_ES
dc.description.references Hird, D. L., Worrall, D., Hodge, R., Smartt, S., Paul, W., & Scott, R. (1993). The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1,3-glucanases. The Plant Journal, 4(6), 1023-1033. doi:10.1046/j.1365-313x.1993.04061023.x es_ES
dc.description.references Huang, J., Smith, A. R., Zhang, T., & Zhao, D. (2016). Creating Completely Both Male and Female Sterile Plants by Specifically Ablating Microspore and Megaspore Mother Cells. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00030 es_ES
dc.description.references Skinner, J. S., Meilan, R., Brunner, A. M., & Strauss, S. H. (2000). Options for Genetic Engineering of Floral Sterility in Forest Trees. Forestry Sciences, 135-153. doi:10.1007/978-94-017-2311-4_5 es_ES
dc.description.references Jenne, D. (1991). Homology of placental protein 11 and pea seed albumin 2 with vitronectin. Biochemical and Biophysical Research Communications, 176(3), 1000-1006. doi:10.1016/0006-291x(91)90381-g es_ES
dc.description.references Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., & Goldberg, R. B. (1990). Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. The Plant Cell, 1201-1224. doi:10.1105/tpc.2.12.1201 es_ES
dc.description.references Lee, Y.-H., Chung, K.-H., Kim, H.-U., Jin, Y.-M., Kim, H.-I., & Park, B.-S. (2003). Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Reports, 22(4), 268-273. doi:10.1007/s00299-003-0688-4 es_ES
dc.description.references Ma, H. (2005). MOLECULAR GENETIC ANALYSES OF MICROSPOROGENESIS AND MICROGAMETOGENESIS IN FLOWERING PLANTS. Annual Review of Plant Biology, 56(1), 393-434. doi:10.1146/annurev.arplant.55.031903.141717 es_ES
dc.description.references Mariani, C., Beuckeleer, M. D., Truettner, J., Leemans, J., & Goldberg, R. B. (1990). Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 347(6295), 737-741. doi:10.1038/347737a0 es_ES
dc.description.references Mariani, C., Gossele, V., Beuckeleer, M. D., Block, M. D., Goldberg, R. B., Greef, W. D., & Leemans, J. (1992). A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature, 357(6377), 384-387. doi:10.1038/357384a0 es_ES
dc.description.references Medina, M., Roque, E., Pineda, B., Cañas, L., Rodriguez-Concepción, M., Beltrán, J. P., & Gómez-Mena, C. (2013). Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnology Journal, 11(6), 770-779. doi:10.1111/pbi.12069 es_ES
dc.description.references Millwood, R. J., Moon, H. S., Poovaiah, C. R., Muthukumar, B., Rice, J. H., Abercrombie, J. M., … Stewart, C. N. (2015). Engineered selective plant male sterility through pollen-specific expression of theEcoRI restriction endonuclease. Plant Biotechnology Journal, 14(5), 1281-1290. doi:10.1111/pbi.12493 es_ES
dc.description.references Mishra, S., & Kumari, V. (2018). A Review on Male Sterility-Concepts and Utilization in Vegetable Crops. International Journal of Current Microbiology and Applied Sciences, 7(2), 3016-3034. doi:10.20546/ijcmas.2018.702.367 es_ES
dc.description.references Nonomura, K.-I., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H., & Kurata, N. (2003). The MSP1 Gene Is Necessary to Restrict the Number of Cells Entering into Male and Female Sporogenesis and to Initiate Anther Wall Formation in Rice. The Plant Cell, 15(8), 1728-1739. doi:10.1105/tpc.012401 es_ES
dc.description.references Paul, W., Hodge, R., Smartt, S., Draper, J., & Scott, R. (1992). The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Molecular Biology, 19(4), 611-622. doi:10.1007/bf00026787 es_ES
dc.description.references Pedroche, J., Yust, M. M., Lqari, H., Megías, C., Girón-Calle, J., Alaiz, M., … Vioque, J. (2005). Chickpea pa2 albumin binds hemin. Plant Science, 168(4), 1109-1114. doi:10.1016/j.plantsci.2004.12.011 es_ES
dc.description.references Pistón, F., García, C., de la Viña, G., Beltran, J. P., Cañas, L. A., & Barro, F. (2007). The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspore stage and during pollen tube development. Molecular Breeding, 21(3), 401-405. doi:10.1007/s11032-007-9133-7 es_ES
dc.description.references Roberts, M., Boyes, E., & Scott, R. (1995). An investigation of the role of the anther tapetum during microspore development using genetic cell ablation. Sexual Plant Reproduction, 8(5). doi:10.1007/bf00229387 es_ES
dc.description.references Rojas-Gracia, P., Roque, E., Medina, M., López-Martín, M. J., Cañas, L. A., Beltrán, J. P., & Gómez-Mena, C. (2019). The DOF Transcription Factor SlDOF10 Regulates Vascular Tissue Formation During Ovary Development in Tomato. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00216 es_ES
dc.description.references Rojas-Gracia, P., Roque, E., Medina, M., Rochina, M., Hamza, R., Angarita-Díaz, M. P., … Gómez-Mena, C. (2017). The parthenocarpichydramutant reveals a new function for aSPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytologist, 214(3), 1198-1212. doi:10.1111/nph.14433 es_ES
dc.description.references Roque, E., Gómez, M. D., Ellul, P., Wallbraun, M., Madueño, F., Beltrán, J.-P., & Cañas, L. A. (2006). The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Reports, 26(3), 313-325. doi:10.1007/s00299-006-0237-z es_ES
dc.description.references Rosellini, D., Pezzotti, M., & Veronesi, F. (2001). Euphytica, 118(3), 313-319. doi:10.1023/a:1017568201732 es_ES
dc.description.references Sanikhani, M., Mibus, H., Stummann, B. M., & Serek, M. (2007). Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Reports, 27(4), 729-737. doi:10.1007/s00299-007-0493-6 es_ES
dc.description.references Saxena, K. B., & Hingane, A. J. (2015). Male Sterility Systems in Major Field Crops and Their Potential Role in Crop Improvement. Plant Biology and Biotechnology, 639-656. doi:10.1007/978-81-322-2286-6_25 es_ES
dc.description.references Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664 es_ES
dc.description.references Shull, G. H. (1908). The Composition of a Field of Maize. Journal of Heredity, os-4(1), 296-301. doi:10.1093/jhered/os-4.1.296 es_ES
dc.description.references Thirukkumaran, G., Khan, R. S., Chin, D. P., Nakamura, I., & Mii, M. (2009). Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana. Plant Cell, Tissue and Organ Culture (PCTOC), 97(3), 237-242. doi:10.1007/s11240-009-9519-9 es_ES
dc.description.references Topp, S. H., Rasmussen, S. K., & Sander, L. (2008). Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell, Tissue and Organ Culture, 93(3), 241-248. doi:10.1007/s11240-008-9368-y es_ES
dc.description.references Vigeolas, H., Chinoy, C., Zuther, E., Blessington, B., Geigenberger, P., & Domoney, C. (2007). Combined Metabolomic and Genetic Approaches Reveal a Link between the Polyamine Pathway and Albumin 2 in Developing Pea Seeds. Plant Physiology, 146(1), 74-82. doi:10.1104/pp.107.111369 es_ES
dc.description.references Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108 es_ES
dc.description.references Yue, Y., Yin, C., Guo, R., Peng, H., Yang, Z., Liu, G., … Hu, H. (2017). An anther-specific gene PhGRP is regulated by PhMYC2 and causes male sterility when overexpressed in petunia anthers. Plant Cell Reports, 36(9), 1401-1415. doi:10.1007/s00299-017-2163-7 es_ES
dc.description.references Zhan, X., Wu, H., & Cheung, A. (1996). Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sexual Plant Reproduction, 9(1). doi:10.1007/bf00230364 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem