- -

On the maximum rank of totally nonnegative matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the maximum rank of totally nonnegative matrices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Rafael es_ES
dc.contributor.author Urbano Salvador, Ana María es_ES
dc.date.accessioned 2020-05-20T03:01:19Z
dc.date.available 2020-05-20T03:01:19Z
dc.date.issued 2018-08-15 es_ES
dc.identifier.issn 0024-3795 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143777
dc.description.abstract [EN] Let A is an element of R-nxn be a totally nonnegative matrix with principal rank p, that is, every minor of A is nonnegative and p is the size of the largest invertible principal submatrix of A. We introduce the sequence of the first p-indices of A as the first initial row and column indices of a p x p invertible principal submatrix of A with rank p. Then, we study the linear dependence relations between the rows and columns indexed by the sequence of the first p-indices of A and the remaining of its rows and columns. These relations, together with the irreducibility property of some submatrices of A, allow us to present an algorithm that calculates the maximum rank of A as a function of the distribution of the first p-indices. Finally, we present a method to construct n x n totally nonnegative matrices with given rank r, principal rank p and a specific sequence of the first p-indices. (C) 2018 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This research was supported by the Spanish DGI grants MTM2013-43678-P, MTM2017-85669-P and MTM2017-90682-REDT. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Linear Algebra and its Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Totally nonnegative matrix es_ES
dc.subject Irreducible matrix es_ES
dc.subject Maximum rank es_ES
dc.subject Principal rank. es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the maximum rank of totally nonnegative matrices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.laa.2018.03.045 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cantó Colomina, R.; Urbano Salvador, AM. (2018). On the maximum rank of totally nonnegative matrices. Linear Algebra and its Applications. 551:125-146. https://doi.org/10.1016/j.laa.2018.03.045 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.laa.2018.03.045 es_ES
dc.description.upvformatpinicio 125 es_ES
dc.description.upvformatpfin 146 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 551 es_ES
dc.relation.pasarela S\357313 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem