Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Rafael | es_ES |
dc.contributor.author | Urbano Salvador, Ana María | es_ES |
dc.date.accessioned | 2020-05-20T03:01:19Z | |
dc.date.available | 2020-05-20T03:01:19Z | |
dc.date.issued | 2018-08-15 | es_ES |
dc.identifier.issn | 0024-3795 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143777 | |
dc.description.abstract | [EN] Let A is an element of R-nxn be a totally nonnegative matrix with principal rank p, that is, every minor of A is nonnegative and p is the size of the largest invertible principal submatrix of A. We introduce the sequence of the first p-indices of A as the first initial row and column indices of a p x p invertible principal submatrix of A with rank p. Then, we study the linear dependence relations between the rows and columns indexed by the sequence of the first p-indices of A and the remaining of its rows and columns. These relations, together with the irreducibility property of some submatrices of A, allow us to present an algorithm that calculates the maximum rank of A as a function of the distribution of the first p-indices. Finally, we present a method to construct n x n totally nonnegative matrices with given rank r, principal rank p and a specific sequence of the first p-indices. (C) 2018 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish DGI grants MTM2013-43678-P, MTM2017-85669-P and MTM2017-90682-REDT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Linear Algebra and its Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Totally nonnegative matrix | es_ES |
dc.subject | Irreducible matrix | es_ES |
dc.subject | Maximum rank | es_ES |
dc.subject | Principal rank. | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On the maximum rank of totally nonnegative matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.laa.2018.03.045 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, R.; Urbano Salvador, AM. (2018). On the maximum rank of totally nonnegative matrices. Linear Algebra and its Applications. 551:125-146. https://doi.org/10.1016/j.laa.2018.03.045 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.laa.2018.03.045 | es_ES |
dc.description.upvformatpinicio | 125 | es_ES |
dc.description.upvformatpfin | 146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 551 | es_ES |
dc.relation.pasarela | S\357313 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |