- -

Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis-Perucho, Pau es_ES
dc.contributor.author Durán Pinzón, Freddy es_ES
dc.contributor.author Barat, Ramón es_ES
dc.contributor.author Paches Giner, Maria Aguas Vivas es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.date.accessioned 2020-05-21T03:01:45Z
dc.date.available 2020-05-21T03:01:45Z
dc.date.issued 2018-06 es_ES
dc.identifier.issn 0273-1223 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143875
dc.description.abstract [EN] The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 mu mol s(-1) m(-2)) and phosphorus concentrations (around 6 and 15 mgP L-1). Four green algae - Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas-and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L-1, a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 +/- 15.8% and 96.1 +/- 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 mu mol s(-1) m(-2) of light intensity and 6.02 mgP L-1 of phosphorus concentration, reaching about 674 +/- 86 mg L-1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species. es_ES
dc.description.sponsorship Financial support from Primeros Proyectos de la Universitat Politecnica de Valencia (UPV PAID-06-14) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher IWA Publishing es_ES
dc.relation.ispartof Water Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anaerobic membrane bioreactor es_ES
dc.subject Continuous photobioreactor es_ES
dc.subject Microalgae competition es_ES
dc.subject Nutrient removal es_ES
dc.subject Wastewater es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2166/wst.2018.207 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-14/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Sanchis-Perucho, P.; Durán Pinzón, F.; Barat, R.; Paches Giner, MAV.; Aguado García, D. (2018). Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration. Water Science & Technology. 27(11):2566-2577. https://doi.org/10.2166/wst.2018.207 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2166/wst.2018.207 es_ES
dc.description.upvformatpinicio 2566 es_ES
dc.description.upvformatpfin 2577 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\362341 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Bornare, J. B., Adhyapak, U. S., Minde, G. P., Kalyan Raman, V., Sapkal, V. S., & Sapkal, R. S. (2015). Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation. Water Science and Technology, 71(11), 1654-1660. doi:10.2166/wst.2015.135 es_ES
dc.description.references Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097-3105. doi:10.1016/j.biortech.2009.12.026 es_ES
dc.description.references Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001 es_ES
dc.description.references Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A., & Steyer, J.-P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207-214. doi:10.1016/j.biortech.2010.06.154 es_ES
dc.description.references Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2011). Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology, 102(8), 5129-5137. doi:10.1016/j.biortech.2011.01.078 es_ES
dc.description.references Ducobu, H., Huisman, J., Jonker, R. R., & Mur, L. R. (1998). COMPETITION BETWEEN A PROCHLOROPHYTE AND A CYANOBACTERIUM UNDER VARIOUS PHOSPHORUS REGIMES: COMPARISON WITH THE DROOP MODEL. Journal of Phycology, 34(3), 467-476. doi:10.1046/j.1529-8817.1998.340467.x es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Hessen, D. O., Færøvig, P. J., & Andersen, T. (2002). LIGHT, NUTRIENTS, AND P:C RATIOS IN ALGAE: GRAZER PERFORMANCE RELATED TO FOOD QUALITY AND QUANTITY. Ecology, 83(7), 1886-1898. doi:10.1890/0012-9658(2002)083[1886:lnapcr]2.0.co;2 es_ES
dc.description.references Hsueh, H. T., Li, W. J., Chen, H. H., & Chu, H. (2009). Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. Journal of Photochemistry and Photobiology B: Biology, 95(1), 33-39. doi:10.1016/j.jphotobiol.2008.11.010 es_ES
dc.description.references Huisman, J., & Weissing, F. J. (1994). Light-Limited Growth and Competition for Light in Well-Mixed Aquatic Environments: An Elementary Model. Ecology, 75(2), 507-520. doi:10.2307/1939554 es_ES
dc.description.references Huisman, J., Jonker, R. R., Zonneveld, C., & Weissing, F. J. (1999). COMPETITION FOR LIGHT BETWEEN PHYTOPLANKTON SPECIES: EXPERIMENTAL TESTS OF MECHANISTIC THEORY. Ecology, 80(1), 211-222. doi:10.1890/0012-9658(1999)080[0211:cflbps]2.0.co;2 es_ES
dc.description.references Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461-475. doi:10.1016/j.apenergy.2012.07.053 es_ES
dc.description.references Laliberté, G., Lessard, P., de la Noüe, J., & Sylvestre, S. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology, 59(2-3), 227-233. doi:10.1016/s0960-8524(96)00144-7 es_ES
dc.description.references Litchman, E. (2003). Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquatic Microbial Ecology, 31, 241-248. doi:10.3354/ame031241 es_ES
dc.description.references Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012 es_ES
dc.description.references Martínez, M. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263-272. doi:10.1016/s0960-8524(99)00121-2 es_ES
dc.description.references Grima, E. M., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., Fernández, F. G. A., & Gómez, A. C. (1994). A mathematical model of microalgal growth in light-limited chemostat culture. Journal of Chemical Technology AND Biotechnology, 61(2), 167-173. doi:10.1002/jctb.280610212 es_ES
dc.description.references Molina Grima, E., García Camacho, F., Sánchez Pérez, J. A., Acién Fernández, F. G., & Fernández Sevilla, J. M. (1997). Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology, 21(5), 375-381. doi:10.1016/s0141-0229(97)00012-4 es_ES
dc.description.references Mulbry, W., Kondrad, S., Pizarro, C., & Kebede-Westhead, E. (2008). Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology, 99(17), 8137-8142. doi:10.1016/j.biortech.2008.03.073 es_ES
dc.description.references Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003 es_ES
dc.description.references Passarge, J., Hol, S., Escher, M., & Huisman, J. (2006). COMPETITION FOR NUTRIENTS AND LIGHT: STABLE COEXISTENCE, ALTERNATIVE STABLE STATES, OR COMPETITIVE EXCLUSION? Ecological Monographs, 76(1), 57-72. doi:10.1890/04-1824 es_ES
dc.description.references Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Factors Influencing Luxury Uptake of Phosphorus by Microalgae in Waste Stabilization Ponds. Environmental Science & Technology, 42(16), 5958-5962. doi:10.1021/es703118s es_ES
dc.description.references Richardson, B., Orcutt, D. M., Schwertner, H. A., Martinez, C. L., & Wickline, H. E. (1969). Effects of Nitrogen Limitation on the Growth and Composition of Unicellular Algae in Continuous Culture. Applied Microbiology, 18(2), 245-250. doi:10.1128/aem.18.2.245-250.1969 es_ES
dc.description.references Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180 es_ES
dc.description.references Ruiz, J., Arbib, Z., Álvarez-Díaz, P. D., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2014). Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. Journal of Biotechnology, 178, 32-37. doi:10.1016/j.jbiotec.2014.03.001 es_ES
dc.description.references Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022 es_ES
dc.description.references Ruiz-Martínez, A., Serralta, J., Seco, A., & Ferrer, J. (2016). Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions. Water Science and Technology, 74(8), 1964-1970. doi:10.2166/wst.2016.383 es_ES
dc.description.references Sturm, B. S. M., & Lamer, S. L. (2011). An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energy, 88(10), 3499-3506. doi:10.1016/j.apenergy.2010.12.056 es_ES
dc.description.references Di Termini, I., Prassone, A., Cattaneo, C., & Rovatti, M. (2011). On the nitrogen and phosphorus removal in algal photobioreactors. Ecological Engineering, 37(6), 976-980. doi:10.1016/j.ecoleng.2011.01.006 es_ES
dc.description.references Donk, E., & Kilham, S. S. (1990). TEMPERATURE EFFECTS ON SILICON- AND PHOSPHORUS-LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS1. Journal of Phycology, 26(1), 40-50. doi:10.1111/j.0022-3646.1990.00040.x es_ES
dc.description.references Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., … Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447-454. doi:10.1016/j.biortech.2016.06.116 es_ES
dc.description.references Weissing, F. J., & Huisman, J. (1994). Growth and Competition in a Light Gradient. Journal of Theoretical Biology, 168(3), 323-336. doi:10.1006/jtbi.1994.1113 es_ES
dc.description.references Yang, Y., Tang, F., Su, X., Yin, H., & Ge, F. (2016). Identification and evaluation of a dominant alga from municipal wastewater in removal of nutrients. Water Science and Technology, 74(11), 2727-2735. doi:10.2166/wst.2016.437 es_ES
dc.description.references Wu, Y.-H., Yu, Y., Li, X., Hu, H.-Y., & Su, Z.-F. (2012). Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresource Technology, 112, 193-198. doi:10.1016/j.biortech.2012.02.037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem