- -

QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis

Show simple item record

Files in this item

dc.contributor.author Terroso-Saenz, Fernando es_ES
dc.contributor.author Muñoz-Ortega, Andrés es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2020-05-21T03:02:01Z
dc.date.available 2020-05-21T03:02:01Z
dc.date.issued 2019-11-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143879
dc.description.abstract [EN] Road traffic pollution is one of the key factors affecting urban air quality. There is a consensus in the community that the efficient use of public transport is the most effective solution. In that sense, much effort has been made in the data mining discipline to come up with solutions able to anticipate taxi demands in a city. This helps to optimize the trips made by such an important urban means of transport. However, most of the existing solutions in the literature define the taxi demand prediction as a regression problem based on historical taxi records. This causes serious limitations with respect to the required data to operate and the interpretability of the prediction outcome. In this paper, we introduce QUADRIVEN (QUalitative tAxi Demand pRediction based on tIme-Variant onlinE social Network data analysis), a novel approach to deal with the taxi demand prediction problem based on human-generated data widely available on online social networks. The result of the prediction is defined on the basis of categorical labels that allow obtaining a semantically-enriched output. Finally, this proposal was tested with different models in a large urban area, showing quite promising results with an F1 score above 0.8. es_ES
dc.description.sponsorship This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Projects 20813/PI/18 and 20530/PDC/18 and by the Spanish Ministry of Science, Innovation and Universities under Grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation MICINN/TIN2016-78799-P es_ES
dc.relation Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia /20813/PI/18 es_ES
dc.relation Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia /20530/PDC/18 es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/RTC-2017-6389-5 es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Taxi demand es_ES
dc.subject Online social networks es_ES
dc.subject Machine learning es_ES
dc.subject Air pollution es_ES
dc.subject Smart cities es_ES
dc.subject Social media analysis es_ES
dc.title QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19224882 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Terroso-Saenz, F.; Muñoz-Ortega, A.; Cecilia-Canales, JM. (2019). QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis. Sensors. 19(22):1-22. https://doi.org/10.3390/s19224882 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19224882 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31717423 es_ES
dc.identifier.pmcid PMC6891530 es_ES
dc.relation.pasarela S\403851 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., … Schwartz, J. D. (2017). Air Pollution and Mortality in the Medicare Population. New England Journal of Medicine, 376(26), 2513-2522. doi:10.1056/nejmoa1702747 es_ES
dc.description.references Li, B., Cai, Z., Jiang, L., Su, S., & Huang, X. (2019). Exploring urban taxi ridership and local associated factors using GPS data and geographically weighted regression. Cities, 87, 68-86. doi:10.1016/j.cities.2018.12.033 es_ES
dc.description.references Yang, Y., Yuan, Z., Fu, X., Wang, Y., & Sun, D. (2019). Optimization Model of Taxi Fleet Size Based on GPS Tracking Data. Sustainability, 11(3), 731. doi:10.3390/su11030731 es_ES
dc.description.references Smith, A. W., Kun, A. L., & Krumm, J. (2017). Predicting taxi pickups in cities. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. doi:10.1145/3123024.3124416 es_ES
dc.description.references Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & Lin, L. (2019). Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3875-3887. doi:10.1109/tits.2019.2915525 es_ES
dc.description.references Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072 es_ES
dc.description.references James, N. A., Kejariwal, A., & Matteson, D. S. (2016). Leveraging cloud data to mitigate user experience from ‘breaking bad’. 2016 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2016.7841013 es_ES
dc.description.references Kuang, L., Yan, X., Tan, X., Li, S., & Yang, X. (2019). Predicting Taxi Demand Based on 3D Convolutional Neural Network and Multi-task Learning. Remote Sensing, 11(11), 1265. doi:10.3390/rs11111265 es_ES
dc.description.references Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., … Li, L.-J. (2016). YFCC100M. Communications of the ACM, 59(2), 64-73. doi:10.1145/2812802 es_ES
dc.description.references Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11. doi:10.1145/2020408.2020579 es_ES
dc.description.references Estevez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized Mutual Information Feature Selection. IEEE Transactions on Neural Networks, 20(2), 189-201. doi:10.1109/tnn.2008.2005601 es_ES
dc.description.references Zheng, X., Han, J., & Sun, A. (2018). A Survey of Location Prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652-1671. doi:10.1109/tkde.2018.2807840 es_ES
dc.description.references Assam, R., & Seidl, T. (2014). Context-based location clustering and prediction using conditional random fields. Proceedings of the 13th International Conference on Mobile and Ubiquitous Multimedia - MUM ’14. doi:10.1145/2677972.2677989 es_ES
dc.description.references Genuer, R., Poggi, J.-M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random Forests for Big Data. Big Data Research, 9, 28-46. doi:10.1016/j.bdr.2017.07.003 es_ES
dc.description.references Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., … Lv, W. (2017). The Simpler The Better. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:10.1145/3097983.3098018 es_ES
dc.description.references Markou, I., Rodrigues, F., & Pereira, F. C. (2018). Real-Time Taxi Demand Prediction using data from the web. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/itsc.2018.8569015 es_ES
dc.description.references Zhou, Y., Wu, Y., Wu, J., Chen, L., & Li, J. (2018). Refined Taxi Demand Prediction with ST-Vec. 2018 26th International Conference on Geoinformatics. doi:10.1109/geoinformatics.2018.8557158 es_ES
dc.description.references Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting Taxi–Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393-1402. doi:10.1109/tits.2013.2262376 es_ES
dc.description.references Jiang, S., Chen, W., Li, Z., & Yu, H. (2019). Short-Term Demand Prediction Method for Online Car-Hailing Services Based on a Least Squares Support Vector Machine. IEEE Access, 7, 11882-11891. doi:10.1109/access.2019.2891825 es_ES


This item appears in the following Collection(s)

Show simple item record