- -

Regional hippocampal vulnerability in early multiple sclerosis: a dynamic pathological spreading from dentate gyrus to CA1

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regional hippocampal vulnerability in early multiple sclerosis: a dynamic pathological spreading from dentate gyrus to CA1

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Planche, Vicent es_ES
dc.contributor.author Koubiyr, Ismail es_ES
dc.contributor.author Romero Gómez, José Enrique es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Coupe, Pierrick es_ES
dc.contributor.author Deloire, Mathilde es_ES
dc.contributor.author Dousset, Vincent es_ES
dc.contributor.author Brochet, Bruno es_ES
dc.contributor.author Ruet, Aurélie es_ES
dc.contributor.author Tourdias, Thomas es_ES
dc.date.accessioned 2020-05-21T03:02:18Z
dc.date.available 2020-05-21T03:02:18Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 1065-9471 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143884
dc.description "This is the peer reviewed version of the following article: Planche, V., Koubiyr, I., Romero, J. E., Manjon, J. V., Coupé, P., Deloire, M., ... & Tourdias, T. (2018). Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA 1. Human brain mapping, 39(4), 1814-1824., which has been published in final form at https://doi.org/10.1002/hbm.23970. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Background: Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. Method: We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. Results: At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R-2 = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (beta = 0.87, p < .05). Conclusion: The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance. es_ES
dc.description.sponsorship ARSEP Foundation; Bordeaux University Hospital; TEVA Laboratories; French Agence Nationale de la Recherche, Grant/Award Numbers: ANR-10-LABX-57, ANR-10-LABX-43, ANR-10-IDEX-03-02, ANR-10-COHO-002; UPV, Grant/Award Numbers: UPV2016-0099, TIN2013-43457-R; Ministerio de Economia y competitividad es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Human Brain Mapping es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Clinically isolated syndrome es_ES
dc.subject Cognition es_ES
dc.subject Dentate gyrus es_ES
dc.subject Hippocampus es_ES
dc.subject Hippocampal subfields es_ES
dc.subject MRI es_ES
dc.subject Multiple sclerosis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Regional hippocampal vulnerability in early multiple sclerosis: a dynamic pathological spreading from dentate gyrus to CA1 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hbm.23970 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-COHO-0002/FR/Observatoire Français de la Sclérose en Plaques/OFSEP/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0043/FR/Bordeaux Region Aquitaine Initiative for Neuroscience/BRAIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/FR/Initiative d’excellence de l’Université de Bordeaux/IDEX BORDEAUX/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-2016-0099/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Planche, V.; Koubiyr, I.; Romero Gómez, JE.; Manjón Herrera, JV.; Coupe, P.; Deloire, M.; Dousset, V.... (2018). Regional hippocampal vulnerability in early multiple sclerosis: a dynamic pathological spreading from dentate gyrus to CA1. Human Brain Mapping. 39(4):1814-1824. https://doi.org/10.1002/hbm.23970 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hbm.23970 es_ES
dc.description.upvformatpinicio 1814 es_ES
dc.description.upvformatpfin 1824 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\355377 es_ES
dc.contributor.funder Teva Pharmaceutical Industries es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Centre Hospitalier Universitaire de Bordeaux es_ES
dc.contributor.funder Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques es_ES
dc.description.references Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025 es_ES
dc.description.references Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus. Science, 319(5870), 1640-1642. doi:10.1126/science.1152882 es_ES
dc.description.references Coupé, P., Manjón, J. V., Chamberland, M., Descoteaux, M., & Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage, 83, 245-261. doi:10.1016/j.neuroimage.2013.06.030 es_ES
dc.description.references De Stefano, N., Airas, L., Grigoriadis, N., Mattle, H. P., O’Riordan, J., Oreja-Guevara, C., … Kieseier, B. C. (2014). Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs, 28(2), 147-156. doi:10.1007/s40263-014-0140-z es_ES
dc.description.references Du, A. T., Schuff, N., Kramer, J. H., Ganzer, S., Zhu, X. P., Jagust, W. J., … Weiner, M. W. (2004). Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology, 62(3), 422-427. doi:10.1212/01.wnl.0000106462.72282.90 es_ES
dc.description.references Dutta, R., Chang, A., Doud, M. K., Kidd, G. J., Ribaudo, M. V., Young, E. A., … Trapp, B. D. (2011). Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Annals of Neurology, 69(3), 445-454. doi:10.1002/ana.22337 es_ES
dc.description.references De Flores, R., La Joie, R., & Chételat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29-50. doi:10.1016/j.neuroscience.2015.08.033 es_ES
dc.description.references Fraser, M. A., Shaw, M. E., & Cherbuin, N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112, 364-374. doi:10.1016/j.neuroimage.2015.03.035 es_ES
dc.description.references Frisoni, G. B., Ganzola, R., Canu, E., Rub, U., Pizzini, F. B., Alessandrini, F., … Thompson, P. M. (2008). Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla. Brain, 131(12), 3266-3276. doi:10.1093/brain/awn280 es_ES
dc.description.references Gold, S. M., Kern, K. C., O’Connor, M.-F., Montag, M. J., Kim, A., Yoo, Y. S., … Sicotte, N. L. (2010). Smaller Cornu Ammonis 2–3/Dentate Gyrus Volumes and Elevated Cortisol in Multiple Sclerosis Patients with Depressive Symptoms. Biological Psychiatry, 68(6), 553-559. doi:10.1016/j.biopsych.2010.04.025 es_ES
dc.description.references Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N., … Volterra, A. (2015). Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell, 163(7), 1730-1741. doi:10.1016/j.cell.2015.11.023 es_ES
dc.description.references Hulst, H. E., Schoonheim, M. M., Van Geest, Q., Uitdehaag, B. M., Barkhof, F., & Geurts, J. J. (2015). Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity. Multiple Sclerosis Journal, 21(13), 1705-1712. doi:10.1177/1352458514567727 es_ES
dc.description.references Jack, C. R., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., … Kokmen, E. (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55(4), 484-490. doi:10.1212/wnl.55.4.484 es_ES
dc.description.references Jack, C. R., Barkhof, F., Bernstein, M. A., Cantillon, M., Cole, P. E., DeCarli, C., … Foster, N. L. (2011). Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimer’s & Dementia, 7(4), 474-485.e4. doi:10.1016/j.jalz.2011.04.007 es_ES
dc.description.references Kerchner, G. A., Bernstein, J. D., Fenesy, M. C., Deutsch, G. K., Saranathan, M., Zeineh, M. M., & Rutt, B. K. (2013). Shared Vulnerability of Two Synaptically-Connected Medial Temporal Lobe Areas to Age and Cognitive Decline: A Seven Tesla Magnetic Resonance Imaging Study. Journal of Neuroscience, 33(42), 16666-16672. doi:10.1523/jneurosci.1915-13.2013 es_ES
dc.description.references La Joie, R., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., … Chételat, G. (2010). Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence. NeuroImage, 53(2), 506-514. doi:10.1016/j.neuroimage.2010.06.024 es_ES
dc.description.references Longoni, G., Rocca, M. A., Pagani, E., Riccitelli, G. C., Colombo, B., Rodegher, M., … Filippi, M. (2013). Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Structure and Function, 220(1), 435-444. doi:10.1007/s00429-013-0665-9 es_ES
dc.description.references Manjón, J. V., & Coupé, P. (2016). volBrain: An Online MRI Brain Volumetry System. Frontiers in Neuroinformatics, 10. doi:10.3389/fninf.2016.00030 es_ES
dc.description.references Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2009). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203. doi:10.1002/jmri.22003 es_ES
dc.description.references Manjón, J. V., Eskildsen, S. F., Coupé, P., Romero, J. E., Collins, D. L., & Robles, M. (2014). Nonlocal Intracranial Cavity Extraction. International Journal of Biomedical Imaging, 2014, 1-11. doi:10.1155/2014/820205 es_ES
dc.description.references Maruszak, A., & Thuret, S. (2014). Why looking at the whole hippocampus is not enough—a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis. Frontiers in Cellular Neuroscience, 8. doi:10.3389/fncel.2014.00095 es_ES
dc.description.references Miller, D. H., Chard, D. T., & Ciccarelli, O. (2012). Clinically isolated syndromes. The Lancet Neurology, 11(2), 157-169. doi:10.1016/s1474-4422(11)70274-5 es_ES
dc.description.references Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Avedissian, C., … Madsen, S. K. (2009). Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Human Brain Mapping, 30(9), 2766-2788. doi:10.1002/hbm.20708 es_ES
dc.description.references Ny�l, L. G., & Udupa, J. K. (1999). On standardizing the MR image intensity scale. Magnetic Resonance in Medicine, 42(6), 1072-1081. doi:10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m es_ES
dc.description.references Papadopoulos, D., Dukes, S., Patel, R., Nicholas, R., Vora, A., & Reynolds, R. (2009). Substantial Archaeocortical Atrophy and Neuronal Loss in Multiple Sclerosis. Brain Pathology, 19(2), 238-253. doi:10.1111/j.1750-3639.2008.00177.x es_ES
dc.description.references Pérez-Miralles, F., Sastre-Garriga, J., Tintoré, M., Arrambide, G., Nos, C., Perkal, H., … Montalban, X. (2013). Clinical impact of early brain atrophy in clinically isolated syndromes. Multiple Sclerosis Journal, 19(14), 1878-1886. doi:10.1177/1352458513488231 es_ES
dc.description.references Planche, V., Ruet, A., Coupé, P., Lamargue-Hamel, D., Deloire, M., Pereira, B., … Tourdias, T. (2016). Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis Journal, 23(9), 1214-1224. doi:10.1177/1352458516675750 es_ES
dc.description.references Planche, V., Panatier, A., Hiba, B., Ducourneau, E.-G., Raffard, G., Dubourdieu, N., … Tourdias, T. (2017). Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis. Brain, Behavior, and Immunity, 60, 240-254. doi:10.1016/j.bbi.2016.11.010 es_ES
dc.description.references Planche, V., Ruet, A., Charré-Morin, J., Deloire, M., Brochet, B., & Tourdias, T. (2017). Pattern separation performance is decreased in patients with early multiple sclerosis. Brain and Behavior, 7(8), e00739. doi:10.1002/brb3.739 es_ES
dc.description.references Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., … Wolinsky, J. S. (2011). Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology, 69(2), 292-302. doi:10.1002/ana.22366 es_ES
dc.description.references Rocca, M. A., Longoni, G., Pagani, E., Boffa, G., Colombo, B., Rodegher, M., … Filippi, M. (2015). In vivo evidence of hippocampal dentate gyrus expansion in multiple sclerosis. Human Brain Mapping, 36(11), 4702-4713. doi:10.1002/hbm.22946 es_ES
dc.description.references Romero, J. E., Coupe, P., & Manjón, J. V. (2016). High Resolution Hippocampus Subfield Segmentation Using Multispectral Multiatlas Patch-Based Label Fusion. Lecture Notes in Computer Science, 117-124. doi:10.1007/978-3-319-47118-1_15 es_ES
dc.description.references Romero, J. E., Coupé, P., & Manjón, J. V. (2017). HIPS: A new hippocampus subfield segmentation method. NeuroImage, 163, 286-295. doi:10.1016/j.neuroimage.2017.09.049 es_ES
dc.description.references Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., … Mühlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774-3783. doi:10.1016/j.neuroimage.2011.11.032 es_ES
dc.description.references Sicotte, N. L., Kern, K. C., Giesser, B. S., Arshanapalli, A., Schultz, A., Montag, M., … Bookheimer, S. Y. (2008). Regional hippocampal atrophy in multiple sclerosis. Brain, 131(4), 1134-1141. doi:10.1093/brain/awn030 es_ES
dc.description.references Small, S. A. (2014). Isolating Pathogenic Mechanisms Embedded within the Hippocampal Circuit through Regional Vulnerability. Neuron, 84(1), 32-39. doi:10.1016/j.neuron.2014.08.030 es_ES
dc.description.references Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51(12), 2442-2449. doi:10.1016/j.neuropsychologia.2012.12.014 es_ES
dc.description.references Thompson, P. M., Hayashi, K. M., de Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., … Toga, A. W. (2004). Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage, 22(4), 1754-1766. doi:10.1016/j.neuroimage.2004.03.040 es_ES
dc.description.references Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310-1320. doi:10.1109/tmi.2010.2046908 es_ES
dc.description.references Wang, L., Swank, J. S., Glick, I. E., Gado, M. H., Miller, M. I., Morris, J. C., & Csernansky, J. G. (2003). Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging☆. NeuroImage, 20(2), 667-682. doi:10.1016/s1053-8119(03)00361-6 es_ES
dc.description.references West, M. ., Coleman, P. ., Flood, D. ., & Troncoso, J. . (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet, 344(8925), 769-772. doi:10.1016/s0140-6736(94)92338-8 es_ES
dc.description.references Winterburn, J. L., Pruessner, J. C., Chavez, S., Schira, M. M., Lobaugh, N. J., Voineskos, A. N., & Chakravarty, M. M. (2013). A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. NeuroImage, 74, 254-265. doi:10.1016/j.neuroimage.2013.02.003 es_ES
dc.description.references Wisse, L. E. M., Daugherty, A. M., Olsen, R. K., Berron, D., Carr, V. A., … Stark, C. E. L. (2016). A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals? Hippocampus, 27(1), 3-11. doi:10.1002/hipo.22671 es_ES
dc.description.references Yushkevich, P. A., Amaral, R. S. C., Augustinack, J. C., Bender, A. R., Bernstein, J. D., Boccardi, M., … Zeineh, M. M. (2015). Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 111, 526-541. doi:10.1016/j.neuroimage.2015.01.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem