Mostrar el registro sencillo del ítem
dc.contributor.author | Mico-Cabanes, Gloria | es_ES |
dc.contributor.author | Gargallo-Jaquotot, Bernardo | es_ES |
dc.contributor.author | Pastor Abellán, Daniel | es_ES |
dc.contributor.author | Muñoz Muñoz, Pascual | es_ES |
dc.date.accessioned | 2020-05-21T03:02:24Z | |
dc.date.available | 2020-05-21T03:02:24Z | |
dc.date.issued | 2019-02-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143886 | |
dc.description.abstract | [EN] In this paper the concept and design of an integrated optical device featuring evanescent field sensing and spectrometric analysis is presented. The device, termed integrated optics sensing spectrometer (IOSS), consists of a modified arrayed waveguide grating (AWG) which arms are engineered into two sets having different focal points. Half of the arms are exposed to the outer media, while the other half are left isolated, thus the device can provide both sensing and reference spectra. Two reference designs are provided for the visible and near-infrared wavelengths, aimed at the determination of the concentration of known solutes through absorption spectroscopy. | es_ES |
dc.description.sponsorship | This research was funded by Spanish MINECO projects grant number TEC2015-69787-REDT (PIC4TB) and TEC2016-80385-P (SINXPECT), as well as FPI doctoral grant BES-2014-068523. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Integrated optical sensor | es_ES |
dc.subject | Evanescent-field sensing | es_ES |
dc.subject | Absorption spectroscopy | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Integrated Optic Sensing Spectrometer: Concept and Design | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19051018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-068523/ES/BES-2014-068523/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-69787-REDT/ES/PHOTONIC INTEGRATED CIRCUITS FOR TELECOM & BIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-80385-P/ES/SILICON NITRIDE SPECTROMETERS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Mico-Cabanes, G.; Gargallo-Jaquotot, B.; Pastor Abellán, D.; Muñoz Muñoz, P. (2019). Integrated Optic Sensing Spectrometer: Concept and Design. Sensors. 19(5):1-15. https://doi.org/10.3390/s19051018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19051018 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 30818872 | es_ES |
dc.identifier.pmcid | PMC6427493 | es_ES |
dc.relation.pasarela | S\380188 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Willner, A. E., Byer, R. L., Chang-Hasnain, C. J., Forrest, S. R., Kressel, H., Kogelnik, H., … Zervas, M. N. (2012). Optics and Photonics: Key Enabling Technologies. Proceedings of the IEEE, 100(Special Centennial Issue), 1604-1643. doi:10.1109/jproc.2012.2190174 | es_ES |
dc.description.references | Lim, A. E.-J., Junfeng Song, Qing Fang, Chao Li, Xiaoguang Tu, Ning Duan, … Tsung-Yang Liow. (2014). Review of Silicon Photonics Foundry Efforts. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 405-416. doi:10.1109/jstqe.2013.2293274 | es_ES |
dc.description.references | Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 | es_ES |
dc.description.references | Muñoz, P., Micó, G., Bru, L., Pastor, D., Pérez, D., Doménech, J., … Domínguez, C. (2017). Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors, 17(9), 2088. doi:10.3390/s17092088 | es_ES |
dc.description.references | Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 | es_ES |
dc.description.references | Barrios, C. A. (2012). Integrated microring resonator sensor arrays for labs-on-chips. Analytical and Bioanalytical Chemistry, 403(6), 1467-1475. doi:10.1007/s00216-012-5937-3 | es_ES |
dc.description.references | Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064 | es_ES |
dc.description.references | Baird, W., & Nogar, N. S. (1995). Compact, Self-Contained Optical Spectrometer. Applied Spectroscopy, 49(11), 1699-1704. doi:10.1366/0003702953965812 | es_ES |
dc.description.references | Feng, D., Qian, W., Liang, H., Kung, C.-C., Fong, J., Luff, B. J., & Asghari, M. (2010). Fabrication Insensitive Echelle Grating in Silicon on Insulator Platform. IEEE Photonics Technology Letters. doi:10.1109/lpt.2010.2102347 | es_ES |
dc.description.references | Takahashi, H., Suzuki, S., & Nishi, I. (1994). Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/ arrayed-waveguide grating. Journal of Lightwave Technology, 12(6), 989-995. doi:10.1109/50.296189 | es_ES |
dc.description.references | Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 | es_ES |
dc.description.references | Kodate, K., & Komai, Y. (2008). Compact spectroscopic sensor using an arrayed waveguide grating. Journal of Optics A: Pure and Applied Optics, 10(4), 044011. doi:10.1088/1464-4258/10/4/044011 | es_ES |
dc.description.references | Subramanian, A. Z., Ryckeboer, E., Dhakal, A., Peyskens, F., Malik, A., Kuyken, B., … Baets, R. (2015). Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photonics Research, 3(5), B47. doi:10.1364/prj.3.000b47 | es_ES |
dc.description.references | Doerr, C. R. (1998). Proposed WDM cross connect using a planar arrangement of waveguide grating routers and phase shifters. IEEE Photonics Technology Letters, 10(4), 528-530. doi:10.1109/68.662583 | es_ES |
dc.description.references | Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240 | es_ES |
dc.description.references | Gargallo, B., & Muñoz, P. (2013). Full field model for interleave-chirped arrayed waveguide gratings. Optics Express, 21(6), 6928. doi:10.1364/oe.21.006928 | es_ES |
dc.description.references | Zhao, H., Clemmen, S., Raza, A., & Baets, R. (2018). Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Optics Letters, 43(6), 1403. doi:10.1364/ol.43.001403 | es_ES |
dc.description.references | Vasiliev, A., Muneeb, M., Allaert, J., Van Campenhout, J., Baets, R., & Roelkens, G. (2018). Integrated Silicon-on-Insulator Spectrometer With Single Pixel Readout for Mid-Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1-7. doi:10.1109/jstqe.2018.2820169 | es_ES |
dc.description.references | Ryckeboer, E., Bockstaele, R., Vanslembrouck, M., & Baets, R. (2014). Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomedical Optics Express, 5(5), 1636. doi:10.1364/boe.5.001636 | es_ES |
dc.description.references | Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 | es_ES |
dc.description.references | Pozo, J., Westerveld, W., Harmsma, P. J., Yang, S., Bodis, P., Nieuwland, R., … Yousefi, M. (2011). Silicon on insulator photonic integrated sensors: On-chip sensing and interrogation. 2011 13th International Conference on Transparent Optical Networks. doi:10.1109/icton.2011.5970854 | es_ES |
dc.description.references | Mũnoz, P., Pastor, D., Capmany, J., & Martínez, A. (2003). Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings. Optics Express, 11(19), 2425. doi:10.1364/oe.11.002425 | es_ES |
dc.description.references | Gomes, K. M. S., Oliveira, M. V. G. A. de, Carvalho, F. R. de S., Menezes, C. C., & Peron, A. P. (2013). Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1), 218-223. doi:10.1590/s0101-20612013005000012 | es_ES |
dc.description.references | Horowitz, V. R., Janowitz, L. A., Modic, A. L., Heiney, P. A., & Collings, P. J. (2005). Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Physical Review E, 72(4). doi:10.1103/physreve.72.041710 | es_ES |
dc.description.references | Jiménez-Márquez, F., Vázquez, J., Úbeda, J., Rodríguez-Rey, J., & Sánchez-Rojas, J. L. (2015). Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications. Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems. doi:10.1117/12.2179341 | es_ES |
dc.description.references | Kakuta, N., Yamashita, H., Kawashima, D., Kondo, K., Arimoto, H., & Yamada, Y. (2016). Simultaneous imaging of temperature and concentration of ethanol–water mixtures in microchannel using near-infrared dual-wavelength absorption technique. Measurement Science and Technology, 27(11), 115401. doi:10.1088/0957-0233/27/11/115401 | es_ES |