- -

Integrated Optic Sensing Spectrometer: Concept and Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integrated Optic Sensing Spectrometer: Concept and Design

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mico-Cabanes, Gloria es_ES
dc.contributor.author Gargallo-Jaquotot, Bernardo es_ES
dc.contributor.author Pastor Abellán, Daniel es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.date.accessioned 2020-05-21T03:02:24Z
dc.date.available 2020-05-21T03:02:24Z
dc.date.issued 2019-02-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143886
dc.description.abstract [EN] In this paper the concept and design of an integrated optical device featuring evanescent field sensing and spectrometric analysis is presented. The device, termed integrated optics sensing spectrometer (IOSS), consists of a modified arrayed waveguide grating (AWG) which arms are engineered into two sets having different focal points. Half of the arms are exposed to the outer media, while the other half are left isolated, thus the device can provide both sensing and reference spectra. Two reference designs are provided for the visible and near-infrared wavelengths, aimed at the determination of the concentration of known solutes through absorption spectroscopy. es_ES
dc.description.sponsorship This research was funded by Spanish MINECO projects grant number TEC2015-69787-REDT (PIC4TB) and TEC2016-80385-P (SINXPECT), as well as FPI doctoral grant BES-2014-068523. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Integrated optical sensor es_ES
dc.subject Evanescent-field sensing es_ES
dc.subject Absorption spectroscopy es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Integrated Optic Sensing Spectrometer: Concept and Design es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19051018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-068523/ES/BES-2014-068523/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-69787-REDT/ES/PHOTONIC INTEGRATED CIRCUITS FOR TELECOM & BIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-80385-P/ES/SILICON NITRIDE SPECTROMETERS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Mico-Cabanes, G.; Gargallo-Jaquotot, B.; Pastor Abellán, D.; Muñoz Muñoz, P. (2019). Integrated Optic Sensing Spectrometer: Concept and Design. Sensors. 19(5):1-15. https://doi.org/10.3390/s19051018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19051018 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 30818872 es_ES
dc.identifier.pmcid PMC6427493 es_ES
dc.relation.pasarela S\380188 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Willner, A. E., Byer, R. L., Chang-Hasnain, C. J., Forrest, S. R., Kressel, H., Kogelnik, H., … Zervas, M. N. (2012). Optics and Photonics: Key Enabling Technologies. Proceedings of the IEEE, 100(Special Centennial Issue), 1604-1643. doi:10.1109/jproc.2012.2190174 es_ES
dc.description.references Lim, A. E.-J., Junfeng Song, Qing Fang, Chao Li, Xiaoguang Tu, Ning Duan, … Tsung-Yang Liow. (2014). Review of Silicon Photonics Foundry Efforts. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 405-416. doi:10.1109/jstqe.2013.2293274 es_ES
dc.description.references Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 es_ES
dc.description.references Muñoz, P., Micó, G., Bru, L., Pastor, D., Pérez, D., Doménech, J., … Domínguez, C. (2017). Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors, 17(9), 2088. doi:10.3390/s17092088 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Barrios, C. A. (2012). Integrated microring resonator sensor arrays for labs-on-chips. Analytical and Bioanalytical Chemistry, 403(6), 1467-1475. doi:10.1007/s00216-012-5937-3 es_ES
dc.description.references Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064 es_ES
dc.description.references Baird, W., & Nogar, N. S. (1995). Compact, Self-Contained Optical Spectrometer. Applied Spectroscopy, 49(11), 1699-1704. doi:10.1366/0003702953965812 es_ES
dc.description.references Feng, D., Qian, W., Liang, H., Kung, C.-C., Fong, J., Luff, B. J., & Asghari, M. (2010). Fabrication Insensitive Echelle Grating in Silicon on Insulator Platform. IEEE Photonics Technology Letters. doi:10.1109/lpt.2010.2102347 es_ES
dc.description.references Takahashi, H., Suzuki, S., & Nishi, I. (1994). Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/ arrayed-waveguide grating. Journal of Lightwave Technology, 12(6), 989-995. doi:10.1109/50.296189 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 es_ES
dc.description.references Kodate, K., & Komai, Y. (2008). Compact spectroscopic sensor using an arrayed waveguide grating. Journal of Optics A: Pure and Applied Optics, 10(4), 044011. doi:10.1088/1464-4258/10/4/044011 es_ES
dc.description.references Subramanian, A. Z., Ryckeboer, E., Dhakal, A., Peyskens, F., Malik, A., Kuyken, B., … Baets, R. (2015). Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photonics Research, 3(5), B47. doi:10.1364/prj.3.000b47 es_ES
dc.description.references Doerr, C. R. (1998). Proposed WDM cross connect using a planar arrangement of waveguide grating routers and phase shifters. IEEE Photonics Technology Letters, 10(4), 528-530. doi:10.1109/68.662583 es_ES
dc.description.references Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240 es_ES
dc.description.references Gargallo, B., & Muñoz, P. (2013). Full field model for interleave-chirped arrayed waveguide gratings. Optics Express, 21(6), 6928. doi:10.1364/oe.21.006928 es_ES
dc.description.references Zhao, H., Clemmen, S., Raza, A., & Baets, R. (2018). Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Optics Letters, 43(6), 1403. doi:10.1364/ol.43.001403 es_ES
dc.description.references Vasiliev, A., Muneeb, M., Allaert, J., Van Campenhout, J., Baets, R., & Roelkens, G. (2018). Integrated Silicon-on-Insulator Spectrometer With Single Pixel Readout for Mid-Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1-7. doi:10.1109/jstqe.2018.2820169 es_ES
dc.description.references Ryckeboer, E., Bockstaele, R., Vanslembrouck, M., & Baets, R. (2014). Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomedical Optics Express, 5(5), 1636. doi:10.1364/boe.5.001636 es_ES
dc.description.references Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 es_ES
dc.description.references Pozo, J., Westerveld, W., Harmsma, P. J., Yang, S., Bodis, P., Nieuwland, R., … Yousefi, M. (2011). Silicon on insulator photonic integrated sensors: On-chip sensing and interrogation. 2011 13th International Conference on Transparent Optical Networks. doi:10.1109/icton.2011.5970854 es_ES
dc.description.references Mũnoz, P., Pastor, D., Capmany, J., & Martínez, A. (2003). Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings. Optics Express, 11(19), 2425. doi:10.1364/oe.11.002425 es_ES
dc.description.references Gomes, K. M. S., Oliveira, M. V. G. A. de, Carvalho, F. R. de S., Menezes, C. C., & Peron, A. P. (2013). Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1), 218-223. doi:10.1590/s0101-20612013005000012 es_ES
dc.description.references Horowitz, V. R., Janowitz, L. A., Modic, A. L., Heiney, P. A., & Collings, P. J. (2005). Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Physical Review E, 72(4). doi:10.1103/physreve.72.041710 es_ES
dc.description.references Jiménez-Márquez, F., Vázquez, J., Úbeda, J., Rodríguez-Rey, J., & Sánchez-Rojas, J. L. (2015). Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications. Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems. doi:10.1117/12.2179341 es_ES
dc.description.references Kakuta, N., Yamashita, H., Kawashima, D., Kondo, K., Arimoto, H., & Yamada, Y. (2016). Simultaneous imaging of temperature and concentration of ethanol–water mixtures in microchannel using near-infrared dual-wavelength absorption technique. Measurement Science and Technology, 27(11), 115401. doi:10.1088/0957-0233/27/11/115401 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem