- -

Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sperotto, A. es_ES
dc.contributor.author Molina, J.L. es_ES
dc.contributor.author Torresan, S. es_ES
dc.contributor.author Critto, A. es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.contributor.author Marcomini, A. es_ES
dc.date.accessioned 2020-05-22T03:01:58Z
dc.date.available 2020-05-22T03:01:58Z
dc.date.issued 2019-08-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144074
dc.description.abstract [EN] With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 di erent combinations of a global climate model (GCM)¿regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041¿2070) and long-term (2071¿2100) periods with respect to the baseline (1983¿2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between di erent GCM¿RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water quality es_ES
dc.subject Climate change es_ES
dc.subject Bayesian networks es_ES
dc.subject Uncertainty es_ES
dc.subject Multi-models es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11174764 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Sperotto, A.; Molina, J.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. (2019). Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks. Sustainability. 11(17):1-34. https://doi.org/10.3390/su11174764 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11174764 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\411939 es_ES
dc.description.references RES/70/1. Transforming our World: The 2030 Agenda for Sustainable Developmenthttps://sustainabledevelopment.un.org/post2015/transformingourworld es_ES
dc.description.references Pasini, S., Torresan, S., Rizzi, J., Zabeo, A., Critto, A., & Marcomini, A. (2012). Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment. Science of The Total Environment, 440, 219-235. doi:10.1016/j.scitotenv.2012.06.096 es_ES
dc.description.references Iyalomhe, F., Rizzi, J., Pasini, S., Torresan, S., Critto, A., & Marcomini, A. (2015). Regional Risk Assessment for climate change impacts on coastal aquifers. Science of The Total Environment, 537, 100-114. doi:10.1016/j.scitotenv.2015.06.111 es_ES
dc.description.references Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C., & Dadson, S. J. (2016). Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of The Total Environment, 572, 1507-1519. doi:10.1016/j.scitotenv.2016.02.109 es_ES
dc.description.references Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., … Vehviläinen, B. (2015). Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Science of The Total Environment, 529, 168-181. doi:10.1016/j.scitotenv.2015.05.055 es_ES
dc.description.references Carrasco, G., Molina, J.-L., Patino-Alonso, M.-C., Castillo, M. D. C., Vicente-Galindo, M.-P., & Galindo-Villardón, M.-P. (2019). Water quality evaluation through a multivariate statistical HJ-Biplot approach. Journal of Hydrology, 577, 123993. doi:10.1016/j.jhydrol.2019.123993 es_ES
dc.description.references Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877 es_ES
dc.description.references Beck, M., & Krueger, T. (2016). The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdisciplinary Reviews: Climate Change, 7(5), 627-645. doi:10.1002/wcc.415 es_ES
dc.description.references Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Ø., Piniewski, M., & Otto, I. M. (2018). Uncertainty in climate change impacts on water resources. Environmental Science & Policy, 79, 1-8. doi:10.1016/j.envsci.2017.10.008 es_ES
dc.description.references Parker, W. S. (2013). Ensemble modeling, uncertainty and robust predictions. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 213-223. doi:10.1002/wcc.220 es_ES
dc.description.references Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095-1108. doi:10.1175/2009bams2607.1 es_ES
dc.description.references Ajami, N. K., Hornberger, G. M., & Sunding, D. L. (2008). Sustainable water resource management under hydrological uncertainty. Water Resources Research, 44(11). doi:10.1029/2007wr006736 es_ES
dc.description.references Larson, K., White, D., Gober, P., & Wutich, A. (2015). Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation. Sustainability, 7(11), 14761-14784. doi:10.3390/su71114761 es_ES
dc.description.references Power, M., & McCarty, L. S. (2006). Environmental Risk Management Decision-Making in a Societal Context. Human and Ecological Risk Assessment: An International Journal, 12(1), 18-27. doi:10.1080/10807030500428538 es_ES
dc.description.references Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3-4), 312-318. doi:10.1016/j.ecolmodel.2006.11.033 es_ES
dc.description.references Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139(3-4), 551-564. doi:10.1007/s10584-016-1803-1 es_ES
dc.description.references Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. doi:10.1098/rsta.2007.2076 es_ES
dc.description.references Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2014). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21(2), 911-925. doi:10.1111/gcb.12768 es_ES
dc.description.references Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., … Surendran, S. (2000). Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate, 13(23), 4196-4216. doi:10.1175/1520-0442(2000)013<4196:meffwa>2.0.co;2 es_ES
dc.description.references Xu, H., Brown, D. G., & Steiner, A. L. (2018). Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Climatic Change, 147(3-4), 647-662. doi:10.1007/s10584-018-2159-5 es_ES
dc.description.references Zuliani, A., Zaggia, L., Collavini, F., & Zonta, R. (2005). Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environment International, 31(7), 929-938. doi:10.1016/j.envint.2005.05.004 es_ES
dc.description.references Facca, C., Ceoldo, S., Pellegrino, N., & Sfriso, A. (2014). Natural Recovery and Planned Intervention in Coastal Wetlands: Venice Lagoon (Northern Adriatic Sea, Italy) as a Case Study. The Scientific World Journal, 2014, 1-15. doi:10.1155/2014/968618 es_ES
dc.description.references Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131 es_ES
dc.description.references Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P., Manzini, E., … Navarra, A. (2011). Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. Journal of Climate, 24(16), 4368-4384. doi:10.1175/2011jcli4104.1 es_ES
dc.description.references Cattaneo, L., Zollo, A. L., Bucchignani, E., Montesarchio, M., Manzi, M. P., & Mercogliano, P. (2012). Assessment of COSMO-CLM Performances over Mediterranean Area. SSRN Electronic Journal. doi:10.2139/ssrn.2195524 es_ES
dc.description.references Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004 es_ES
dc.description.references MADSEN, A. L., JENSEN, F., KJÆRULFF, U. B., & LANG, M. (2005). THE HUGIN TOOL FOR PROBABILISTIC GRAPHICAL MODELS. International Journal on Artificial Intelligence Tools, 14(03), 507-543. doi:10.1142/s0218213005002235 es_ES
dc.description.references Bromley, J., Jackson, N. A., Clymer, O. J., Giacomello, A. M., & Jensen, F. V. (2005). The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environmental Modelling & Software, 20(2), 231-242. doi:10.1016/j.envsoft.2003.12.021 es_ES
dc.description.references J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, … M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256 es_ES
dc.description.references Marcot, B. G. (2012). Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling, 230, 50-62. doi:10.1016/j.ecolmodel.2012.01.013 es_ES
dc.description.references http://www.landscapelogic.org.au/publications/Technical_Reports/No_9_BNs_for_Integrated_Catchment_Management.pdf es_ES
dc.description.references Molina, J.-L., Zazo, S., Rodríguez-Gonzálvez, P., & González-Aguilera, D. (2016). Innovative Analysis of Runoff Temporal Behavior through Bayesian Networks. Water, 8(11), 484. doi:10.3390/w8110484 es_ES
dc.description.references Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., & Hart, B. T. (2007). Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environmental Modelling & Software, 22(8), 1140-1152. doi:10.1016/j.envsoft.2006.03.006 es_ES
dc.description.references Pesce, M., Critto, A., Torresan, S., Giubilato, E., Pizzol, L., & Marcomini, A. (2019). Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the lagoon of Venice, Italy. Ecological Engineering, 133, 121-136. doi:10.1016/j.ecoleng.2019.04.011 es_ES
dc.description.references Bouraoui, F., Galbiati, L., & Bidoglio, G. (2002). Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences, 6(2), 197-209. doi:10.5194/hess-6-197-2002 es_ES
dc.description.references Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2011). Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions. Water Resources Management, 25(14), 3635-3660. doi:10.1007/s11269-011-9874-2 es_ES
dc.description.references Molina, J.-L., Pulido-Velázquez, D., García-Aróstegui, J. L., & Pulido-Velázquez, M. (2013). Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology, 479, 113-129. doi:10.1016/j.jhydrol.2012.11.038 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem