Mostrar el registro sencillo del ítem
dc.contributor.author | Sperotto, A. | es_ES |
dc.contributor.author | Molina, J.L. | es_ES |
dc.contributor.author | Torresan, S. | es_ES |
dc.contributor.author | Critto, A. | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.contributor.author | Marcomini, A. | es_ES |
dc.date.accessioned | 2020-05-22T03:01:58Z | |
dc.date.available | 2020-05-22T03:01:58Z | |
dc.date.issued | 2019-08-31 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144074 | |
dc.description.abstract | [EN] With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 di erent combinations of a global climate model (GCM)¿regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041¿2070) and long-term (2071¿2100) periods with respect to the baseline (1983¿2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between di erent GCM¿RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Bayesian networks | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Multi-models | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su11174764 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Sperotto, A.; Molina, J.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. (2019). Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks. Sustainability. 11(17):1-34. https://doi.org/10.3390/su11174764 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su11174764 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\411939 | es_ES |
dc.description.references | RES/70/1. Transforming our World: The 2030 Agenda for Sustainable Developmenthttps://sustainabledevelopment.un.org/post2015/transformingourworld | es_ES |
dc.description.references | Pasini, S., Torresan, S., Rizzi, J., Zabeo, A., Critto, A., & Marcomini, A. (2012). Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment. Science of The Total Environment, 440, 219-235. doi:10.1016/j.scitotenv.2012.06.096 | es_ES |
dc.description.references | Iyalomhe, F., Rizzi, J., Pasini, S., Torresan, S., Critto, A., & Marcomini, A. (2015). Regional Risk Assessment for climate change impacts on coastal aquifers. Science of The Total Environment, 537, 100-114. doi:10.1016/j.scitotenv.2015.06.111 | es_ES |
dc.description.references | Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C., & Dadson, S. J. (2016). Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of The Total Environment, 572, 1507-1519. doi:10.1016/j.scitotenv.2016.02.109 | es_ES |
dc.description.references | Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., … Vehviläinen, B. (2015). Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Science of The Total Environment, 529, 168-181. doi:10.1016/j.scitotenv.2015.05.055 | es_ES |
dc.description.references | Carrasco, G., Molina, J.-L., Patino-Alonso, M.-C., Castillo, M. D. C., Vicente-Galindo, M.-P., & Galindo-Villardón, M.-P. (2019). Water quality evaluation through a multivariate statistical HJ-Biplot approach. Journal of Hydrology, 577, 123993. doi:10.1016/j.jhydrol.2019.123993 | es_ES |
dc.description.references | Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877 | es_ES |
dc.description.references | Beck, M., & Krueger, T. (2016). The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdisciplinary Reviews: Climate Change, 7(5), 627-645. doi:10.1002/wcc.415 | es_ES |
dc.description.references | Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Ø., Piniewski, M., & Otto, I. M. (2018). Uncertainty in climate change impacts on water resources. Environmental Science & Policy, 79, 1-8. doi:10.1016/j.envsci.2017.10.008 | es_ES |
dc.description.references | Parker, W. S. (2013). Ensemble modeling, uncertainty and robust predictions. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 213-223. doi:10.1002/wcc.220 | es_ES |
dc.description.references | Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095-1108. doi:10.1175/2009bams2607.1 | es_ES |
dc.description.references | Ajami, N. K., Hornberger, G. M., & Sunding, D. L. (2008). Sustainable water resource management under hydrological uncertainty. Water Resources Research, 44(11). doi:10.1029/2007wr006736 | es_ES |
dc.description.references | Larson, K., White, D., Gober, P., & Wutich, A. (2015). Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation. Sustainability, 7(11), 14761-14784. doi:10.3390/su71114761 | es_ES |
dc.description.references | Power, M., & McCarty, L. S. (2006). Environmental Risk Management Decision-Making in a Societal Context. Human and Ecological Risk Assessment: An International Journal, 12(1), 18-27. doi:10.1080/10807030500428538 | es_ES |
dc.description.references | Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3-4), 312-318. doi:10.1016/j.ecolmodel.2006.11.033 | es_ES |
dc.description.references | Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139(3-4), 551-564. doi:10.1007/s10584-016-1803-1 | es_ES |
dc.description.references | Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. doi:10.1098/rsta.2007.2076 | es_ES |
dc.description.references | Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2014). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21(2), 911-925. doi:10.1111/gcb.12768 | es_ES |
dc.description.references | Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., … Surendran, S. (2000). Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate, 13(23), 4196-4216. doi:10.1175/1520-0442(2000)013<4196:meffwa>2.0.co;2 | es_ES |
dc.description.references | Xu, H., Brown, D. G., & Steiner, A. L. (2018). Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Climatic Change, 147(3-4), 647-662. doi:10.1007/s10584-018-2159-5 | es_ES |
dc.description.references | Zuliani, A., Zaggia, L., Collavini, F., & Zonta, R. (2005). Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environment International, 31(7), 929-938. doi:10.1016/j.envint.2005.05.004 | es_ES |
dc.description.references | Facca, C., Ceoldo, S., Pellegrino, N., & Sfriso, A. (2014). Natural Recovery and Planned Intervention in Coastal Wetlands: Venice Lagoon (Northern Adriatic Sea, Italy) as a Case Study. The Scientific World Journal, 2014, 1-15. doi:10.1155/2014/968618 | es_ES |
dc.description.references | Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131 | es_ES |
dc.description.references | Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P., Manzini, E., … Navarra, A. (2011). Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. Journal of Climate, 24(16), 4368-4384. doi:10.1175/2011jcli4104.1 | es_ES |
dc.description.references | Cattaneo, L., Zollo, A. L., Bucchignani, E., Montesarchio, M., Manzi, M. P., & Mercogliano, P. (2012). Assessment of COSMO-CLM Performances over Mediterranean Area. SSRN Electronic Journal. doi:10.2139/ssrn.2195524 | es_ES |
dc.description.references | Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004 | es_ES |
dc.description.references | MADSEN, A. L., JENSEN, F., KJÆRULFF, U. B., & LANG, M. (2005). THE HUGIN TOOL FOR PROBABILISTIC GRAPHICAL MODELS. International Journal on Artificial Intelligence Tools, 14(03), 507-543. doi:10.1142/s0218213005002235 | es_ES |
dc.description.references | Bromley, J., Jackson, N. A., Clymer, O. J., Giacomello, A. M., & Jensen, F. V. (2005). The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environmental Modelling & Software, 20(2), 231-242. doi:10.1016/j.envsoft.2003.12.021 | es_ES |
dc.description.references | J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, … M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256 | es_ES |
dc.description.references | Marcot, B. G. (2012). Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling, 230, 50-62. doi:10.1016/j.ecolmodel.2012.01.013 | es_ES |
dc.description.references | http://www.landscapelogic.org.au/publications/Technical_Reports/No_9_BNs_for_Integrated_Catchment_Management.pdf | es_ES |
dc.description.references | Molina, J.-L., Zazo, S., Rodríguez-Gonzálvez, P., & González-Aguilera, D. (2016). Innovative Analysis of Runoff Temporal Behavior through Bayesian Networks. Water, 8(11), 484. doi:10.3390/w8110484 | es_ES |
dc.description.references | Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., & Hart, B. T. (2007). Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environmental Modelling & Software, 22(8), 1140-1152. doi:10.1016/j.envsoft.2006.03.006 | es_ES |
dc.description.references | Pesce, M., Critto, A., Torresan, S., Giubilato, E., Pizzol, L., & Marcomini, A. (2019). Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the lagoon of Venice, Italy. Ecological Engineering, 133, 121-136. doi:10.1016/j.ecoleng.2019.04.011 | es_ES |
dc.description.references | Bouraoui, F., Galbiati, L., & Bidoglio, G. (2002). Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences, 6(2), 197-209. doi:10.5194/hess-6-197-2002 | es_ES |
dc.description.references | Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2011). Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions. Water Resources Management, 25(14), 3635-3660. doi:10.1007/s11269-011-9874-2 | es_ES |
dc.description.references | Molina, J.-L., Pulido-Velázquez, D., García-Aróstegui, J. L., & Pulido-Velázquez, M. (2013). Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology, 479, 113-129. doi:10.1016/j.jhydrol.2012.11.038 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |