- -

Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corberán-Vallet, Ana es_ES
dc.contributor.author Santonja, F. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2020-05-22T03:02:12Z
dc.date.available 2020-05-22T03:02:12Z
dc.date.issued 2018-03-20 es_ES
dc.identifier.issn 1076-2787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144078
dc.description.abstract [EN] We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine immunization program in order to reduce the impact of this disease, which remains a public health's great concern. Under this scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the population and the inherent stochasticity in the transmission of the disease. As shown in a comparative study, these assumptions are fundamental to describe properly the evolution of the disease. The Bayesian analysis of the model allows us to calculate the posterior distribution of the model parameters and the posterior predictive distribution of chickenpox incidence, which facilitates the computation of point forecasts and prediction intervals. es_ES
dc.description.sponsorship This work has been supported by a research grant from the Spanish Ministry of Economy and Competitiveness (MTM2017-83850-P). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Complexity es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2018/3060368 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83850-P/ES/PREDICCION Y OPTIMIZACION BAJO INCERTIDUMBRE: MODELOS ESTOCASTICOS DINAMICOS Y APLICACIONES (2)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Corberán-Vallet, A.; Santonja, F.; Jornet-Sanz, M.; Villanueva Micó, RJ. (2018). Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model. Complexity. 1-9. https://doi.org/10.1155/2018/3060368 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2018/3060368 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\363084 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Acedo, L., Moraño, J.-A., Santonja, F.-J., & Villanueva, R.-J. (2016). A deterministic model for highly contagious diseases: The case of varicella. Physica A: Statistical Mechanics and its Applications, 450, 278-286. doi:10.1016/j.physa.2015.12.153 es_ES
dc.description.references Díez-Gandía, A., Villanueva, R.-J., Moraño, J.-A., Acedo, L., Mollar, J., & Díez-Domingo, J. (2016). Studying the Herd Immunity Effect of the Varicella Vaccine in the Community of Valencia, Spain. Lecture Notes in Computer Science, 38-46. doi:10.1007/978-3-319-31744-1_4 es_ES
dc.description.references Stochastic epidemic models with a backward bifurcation. (2006). Mathematical Biosciences and Engineering, 3(3), 445-458. doi:10.3934/mbe.2006.3.445 es_ES
dc.description.references Roberts, M., Andreasen, V., Lloyd, A., & Pellis, L. (2015). Nine challenges for deterministic epidemic models. Epidemics, 10, 49-53. doi:10.1016/j.epidem.2014.09.006 es_ES
dc.description.references Corberán-Vallet, A., & Santonja, F. J. (2014). A Bayesian SIRS model for the analysis of respiratory syncytial virus in the region of Valencia, Spain. Biometrical Journal, 56(5), 808-818. doi:10.1002/bimj.201300194 es_ES
dc.description.references Bjørnstad, O. N., Finkenstädt, B. F., & Grenfell, B. T. (2002). DYNAMICS OF MEASLES EPIDEMICS: ESTIMATING SCALING OF TRANSMISSION RATES USING A TIME SERIES SIR MODEL. Ecological Monographs, 72(2), 169-184. doi:10.1890/0012-9615(2002)072[0169:domees]2.0.co;2 es_ES
dc.description.references Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1(3), 515-534. doi:10.1214/06-ba117a es_ES
dc.description.references Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). Rejoinder to commentaries on ‘The BUGS project: Evolution, critique and future directions’. Statistics in Medicine, 28(25), 3081-3082. doi:10.1002/sim.3691 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem