- -

FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Souza, Camilo es_ES
dc.contributor.author MOTA, EDJAIR es_ES
dc.contributor.author Soares, Diogo es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.date.accessioned 2020-05-22T03:02:14Z
dc.date.available 2020-05-22T03:02:14Z
dc.date.issued 2019-05-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144079
dc.description.abstract [EN] Opportunistic networks are becoming a solution to provide communication support in areas with overloaded cellular networks, and in scenarios where a fixed infrastructure is not available, as in remote and developing regions. A critical issue, which still requires a satisfactory solution, is the design of an efficient data delivery solution trading off delivery efficiency, delay, and cost. To tackle this problem, most researchers have used either the network state or node mobility as a forwarding criterion. Solutions based on social behaviour have recently been considered as a promising alternative. Following the philosophy from this new category of protocols, in this work, we present our ¿FriendShip and Acquaintanceship Forwarding¿ (FSF) protocol, a routing protocol that makes its routing decisions considering the social ties between the nodes and both the selfishness and the device resources levels of the candidate node for message relaying. When a contact opportunity arises, FSF first classifies the social ties between the message destination and the candidate to relay. Then, by using logistic functions, FSF assesses the relay node selfishness to consider those cases in which the relay node is socially selfish. To consider those cases in which the relay node does not accept receipt of the message because its device has resource constraints at that moment, FSF looks at the resource levels of the relay node. By using the ONE simulator to carry out trace-driven simulation experiments, we find that, when accounting for selfishness on routing decisions, our FSF algorithm outperforms previously proposed schemes, by increasing the delivery ratio up to 20%, with the additional advantage of introducing a lower number of forwarding events. We also find that the chosen buffer management algorithm can become a critical element to improve network performance in scenarios with selfish nodes. es_ES
dc.description.sponsorship This work was partially supported by the "Camilo Batista de Souza/Programa Doutorado-sanduiche no Exterior (PDSE)/Processo 88881.133931/2016-01" and by the Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018, Spain, under Grant RTI2018-096384-B-I00". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Opportunistic networks es_ES
dc.subject Machine learning es_ES
dc.subject Friendship es_ES
dc.subject Selfishness es_ES
dc.subject Routing es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19102374 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UFAM//88881.133931%2F2016-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Souza, C.; Mota, E.; Soares, D.; Manzoni, P.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Hernández-Orallo, E. (2019). FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks. Sensors. 19(10):1-26. https://doi.org/10.3390/s19102374 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19102374 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31126072 es_ES
dc.identifier.pmcid PMC6566534 es_ES
dc.relation.pasarela S\388002 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidade Federal do Amazonas, Brasil es_ES
dc.description.references Trifunovic, S., Kouyoumdjieva, S. T., Distl, B., Pajevic, L., Karlsson, G., & Plattner, B. (2017). A Decade of Research in Opportunistic Networks: Challenges, Relevance, and Future Directions. IEEE Communications Magazine, 55(1), 168-173. doi:10.1109/mcom.2017.1500527cm es_ES
dc.description.references Lu, X., Lio, P., & Hui, P. (2016). Distance-Based Opportunistic Mobile Data Offloading. Sensors, 16(6), 878. doi:10.3390/s16060878 es_ES
dc.description.references Zeng, F., Zhao, N., & Li, W. (2017). Effective Social Relationship Measurement and Cluster Based Routing in Mobile Opportunistic Networks. Sensors, 17(5), 1109. doi:10.3390/s17051109 es_ES
dc.description.references Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2012). Disruption-Tolerant Networking: A Comprehensive Survey on Recent Developments and Persisting Challenges. IEEE Communications Surveys & Tutorials, 14(2), 607-640. doi:10.1109/surv.2011.041911.00093 es_ES
dc.description.references Miao, J., Hasan, O., Mokhtar, S. B., Brunie, L., & Yim, K. (2013). An investigation on the unwillingness of nodes to participate in mobile delay tolerant network routing. International Journal of Information Management, 33(2), 252-262. doi:10.1016/j.ijinfomgt.2012.11.001 es_ES
dc.description.references CRAWDAD Dataset Uoi/Haggle (v. 2016-08-28): Derived from Cambridge/Haggle (v. 2009-05-29)https://crawdad.org/uoi/haggle/20160828 es_ES
dc.description.references Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274-15278. doi:10.1073/pnas.0900282106 es_ES
dc.description.references Tsai, T.-C., & Chan, H.-H. (2015). NCCU Trace: social-network-aware mobility trace. IEEE Communications Magazine, 53(10), 144-149. doi:10.1109/mcom.2015.7295476 es_ES
dc.description.references Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks. IEEE Transactions on Mobile Computing, 10(11), 1576-1589. doi:10.1109/tmc.2010.246 es_ES
dc.description.references Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19-20. doi:10.1145/961268.961272 es_ES
dc.description.references Cao, Y., & Sun, Z. (2013). Routing in Delay/Disruption Tolerant Networks: A Taxonomy, Survey and Challenges. IEEE Communications Surveys & Tutorials, 15(2), 654-677. doi:10.1109/surv.2012.042512.00053 es_ES
dc.description.references Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A Survey of Social-Based Routing in Delay Tolerant Networks: Positive and Negative Social Effects. IEEE Communications Surveys & Tutorials, 15(1), 387-401. doi:10.1109/surv.2012.032612.00004 es_ES
dc.description.references Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data MULEs: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2-3), 215-233. doi:10.1016/s1570-8705(03)00003-9 es_ES
dc.description.references Burns, B., Brock, O., & Levine, B. N. (2008). MORA routing and capacity building in disruption-tolerant networks. Ad Hoc Networks, 6(4), 600-620. doi:10.1016/j.adhoc.2007.05.002 es_ES
dc.description.references Shaghaghian, S., & Coates, M. (2015). Optimal Forwarding in Opportunistic Delay Tolerant Networks With Meeting Rate Estimations. IEEE Transactions on Signal and Information Processing over Networks, 1(2), 104-116. doi:10.1109/tsipn.2015.2452811 es_ES
dc.description.references Li, L., Qin, Y., & Zhong, X. (2016). A Novel Routing Scheme for Resource-Constraint Opportunistic Networks: A Cooperative Multiplayer Bargaining Game Approach. IEEE Transactions on Vehicular Technology, 65(8), 6547-6561. doi:10.1109/tvt.2015.2476703 es_ES
dc.description.references Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking. ACM SIGPLAN Notices, 37(10), 96-107. doi:10.1145/605432.605408 es_ES
dc.description.references Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient Routing in Intermittently Connected Mobile Networks: The Single-Copy Case. IEEE/ACM Transactions on Networking, 16(1), 63-76. doi:10.1109/tnet.2007.897962 es_ES
dc.description.references Zhang, L., Wang, X., Lu, J., Ren, M., Duan, Z., & Cai, Z. (2014). A novel contact prediction-based routing scheme for DTNs. Transactions on Emerging Telecommunications Technologies, 28(1), e2889. doi:10.1002/ett.2889 es_ES
dc.description.references Okasha, S. (2005). Altruism, Group Selection and Correlated Interaction. The British Journal for the Philosophy of Science, 56(4), 703-725. doi:10.1093/bjps/axi143 es_ES
dc.description.references Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.2343627 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem