- -

Dynamic capacity provision for wireless sensors connectivity: A profit optimization approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic capacity provision for wireless sensors connectivity: A profit optimization approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis-Cano, Ángel es_ES
dc.contributor.author Guijarro, Luis es_ES
dc.contributor.author Condoluci, Massimo es_ES
dc.date.accessioned 2020-05-22T03:02:34Z
dc.date.available 2020-05-22T03:02:34Z
dc.date.issued 2018-04-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144087
dc.description.abstract [EN] We model a wireless sensors' connectivity scenario mathematically and analyze it using capacity provision mechanisms, with the objective of maximizing the profits of a network operator. The scenario has several sensors' clusters with each one having one sink node, which uploads the sensing data gathered in the cluster through the wireless connectivity of a network operator. The scenario is analyzed both as a static game and as a dynamic game, each one with two stages, using game theory. The sinks' behavior is characterized with a utility function related to the mean service time and the price paid to the operator for the service. The objective of the operator is to maximize its profits by optimizing the network capacity. In the static game, the sinks' subscription decision is modeled using a population game. In the dynamic game, the sinks' behavior is modeled using an evolutionary game and the replicator dynamic, while the operator optimal capacity is obtained solving an optimal control problem. The scenario is shown feasible from an economic point of view. In addition, the dynamic capacity provision optimization is shown as a valid mechanism for maximizing the operator profits, as well as a useful tool to analyze evolving scenarios. Finally, the dynamic analysis opens the possibility to study more complex scenarios using the differential game extension. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Spanish Ministry of Economy and Competitiveness through project TIN2013-47272-C2-1-R; AEI/FEDER, UE through project TEC2017-85830-C2-1-P; and co-supported by the European Social Fund BES-2014-068998. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Distributed Sensor Networks (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internet of things es_ES
dc.subject Evolutionary game theory es_ES
dc.subject Optimal control es_ES
dc.subject Dynamic capacity optimization es_ES
dc.subject Profit maximization es_ES
dc.subject Nash equilibrium es_ES
dc.subject Network economics es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Dynamic capacity provision for wireless sensors connectivity: A profit optimization approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1550147718772544 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TEC2017-85830-C2-1-P/ES/FLEXIBILIDAD E INTELIGENCIA PARA LA GESTION DE RECURSOS EN REDES 5G/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-068998/ES/BES-2014-068998/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sanchis-Cano, Á.; Guijarro, L.; Condoluci, M. (2018). Dynamic capacity provision for wireless sensors connectivity: A profit optimization approach. International Journal of Distributed Sensor Networks (Online). 14(4):1-14. https://doi.org/10.1177/1550147718772544 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1550147718772544 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1550-1477 es_ES
dc.relation.pasarela S\362040 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104. doi:10.1038/scientificamerican0991-94 es_ES
dc.description.references Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. doi:10.1016/j.future.2013.01.010 es_ES
dc.description.references Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2013). Sensing as a service model for smart cities supported by Internet of Things. Transactions on Emerging Telecommunications Technologies, 25(1), 81-93. doi:10.1002/ett.2704 es_ES
dc.description.references Wang, N., Hossain, E., & Bhargava, V. K. (2016). Joint Downlink Cell Association and Bandwidth Allocation for Wireless Backhauling in Two-Tier HetNets With Large-Scale Antenna Arrays. IEEE Transactions on Wireless Communications, 15(5), 3251-3268. doi:10.1109/twc.2016.2519401 es_ES
dc.description.references Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2013). Call admission control based on adaptive bandwidth allocation for wireless networks. Journal of Communications and Networks, 15(1), 15-24. doi:10.1109/jcn.2013.000005 es_ES
dc.description.references Nan, G., Mao, Z., Yu, M., Li, M., Wang, H., & Zhang, Y. (2014). Stackelberg Game for Bandwidth Allocation in Cloud-Based Wireless Live-Streaming Social Networks. IEEE Systems Journal, 8(1), 256-267. doi:10.1109/jsyst.2013.2253420 es_ES
dc.description.references Zhu, K., Niyato, D., Wang, P., & Han, Z. (2012). Dynamic Spectrum Leasing and Service Selection in Spectrum Secondary Market of Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 11(3), 1136-1145. doi:10.1109/twc.2012.010312.110732 es_ES
dc.description.references Vamvakas, P., Tsiropoulou, E. E., & Papavassiliou, S. (2017). Dynamic Provider Selection & Power Resource Management in Competitive Wireless Communication Markets. Mobile Networks and Applications, 23(1), 86-99. doi:10.1007/s11036-017-0885-y es_ES
dc.description.references Niyato, D., Hoang, D. T., Luong, N. C., Wang, P., Kim, D. I., & Han, Z. (2016). Smart data pricing models for the internet of things: a bundling strategy approach. IEEE Network, 30(2), 18-25. doi:10.1109/mnet.2016.7437020 es_ES
dc.description.references Guijarro, L., Pla, V., Vidal, J. R., & Naldi, M. (2016). Maximum-Profit Two-Sided Pricing in Service Platforms Based on Wireless Sensor Networks. IEEE Wireless Communications Letters, 5(1), 8-11. doi:10.1109/lwc.2015.2487259 es_ES
dc.description.references Romero, J., Guijarro, L., Pla, V., & Vidal, J. R. (2017). Price competition between a macrocell and a small-cell service provider with limited resources and optimal bandwidth user subscription: a game-theoretical model. Telecommunication Systems, 67(2), 195-209. doi:10.1007/s11235-017-0331-2 es_ES
dc.description.references Al Daoud, A., Alanyali, M., & Starobinski, D. (2010). Pricing Strategies for Spectrum Lease in Secondary Markets. IEEE/ACM Transactions on Networking, 18(2), 462-475. doi:10.1109/tnet.2009.2031176 es_ES
dc.description.references Do, C. T., Tran, N. H., Huh, E.-N., Hong, C. S., Niyato, D., & Han, Z. (2016). Dynamics of service selection and provider pricing game in heterogeneous cloud market. Journal of Network and Computer Applications, 69, 152-165. doi:10.1016/j.jnca.2016.04.012 es_ES
dc.description.references Tsiropoulou, E. E., Vamvakas, P., & Papavassiliou, S. (2017). Joint Customized Price and Power Control for Energy-Efficient Multi-Service Wireless Networks via S-Modular Theory. IEEE Transactions on Green Communications and Networking, 1(1), 17-28. doi:10.1109/tgcn.2017.2678207 es_ES
dc.description.references Sanchis-Cano, A., Romero, J., Sacoto-Cabrera, E., & Guijarro, L. (2017). Economic Feasibility of Wireless Sensor Network-Based Service Provision in a Duopoly Setting with a Monopolist Operator. Sensors, 17(12), 2727. doi:10.3390/s17122727 es_ES
dc.description.references Weber, T. A. (2011). Optimal Control Theory with Applications in Economics. doi:10.7551/mitpress/9780262015738.001.0001 es_ES
dc.description.references Mandjes, M. (2003). Pricing strategies under heterogeneous service requirements. Computer Networks, 42(2), 231-249. doi:10.1016/s1389-1286(03)00191-9 es_ES
dc.description.references Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jäntti, R., & Ghosh, A. (2015). Machine-type communications: current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10-17. doi:10.1109/mcom.2015.7263367 es_ES
dc.description.references Ng, C.-H., & Soong, B.-H. (2008). Queueing Modelling Fundamentals. doi:10.1002/9780470994672 es_ES
dc.description.references Mendelson, H. (1985). Pricing computer services: queueing effects. Communications of the ACM, 28(3), 312-321. doi:10.1145/3166.3171 es_ES
dc.description.references Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., & Wynter, L. (2006). A survey on networking games in telecommunications. Computers & Operations Research, 33(2), 286-311. doi:10.1016/j.cor.2004.06.005 es_ES
dc.description.references Belleflamme, P., & Peitz, M. (2015). Industrial Organization. doi:10.1017/cbo9781107707139 es_ES
dc.description.references Reynolds, S. S. (1987). Capacity Investment, Preemption and Commitment in an Infinite Horizon Model. International Economic Review, 28(1), 69. doi:10.2307/2526860 es_ES
dc.description.references Barron, E. N. (2013). Game Theory. doi:10.1002/9781118547168 es_ES
dc.description.references Sandholm, W. (2009). Pairwise Comparison Dynamics and Evolutionary Foundations for Nash Equilibrium. Games, 1(1), 3-17. doi:10.3390/g1010003 es_ES
dc.description.references Schlag, K. H. (1998). Why Imitate, and If So, How? Journal of Economic Theory, 78(1), 130-156. doi:10.1006/jeth.1997.2347 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem