- -

Oblique Wave Attack on Rubble Mound Breakwater Crest Walls of Finite Length

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Oblique Wave Attack on Rubble Mound Breakwater Crest Walls of Finite Length

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mares-Nasarre, Patricia es_ES
dc.contributor.author van Gent, Marcel R.A. es_ES
dc.date.accessioned 2020-05-22T03:02:38Z
dc.date.available 2020-05-22T03:02:38Z
dc.date.issued 2020-01-28 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144089
dc.description.abstract [EN] Rubble mound breakwaters usually present a crest wall to increase the crest freeboards without a large increase of the consumption of material. Methods in the literature to design crest walls are based on estimates of the wave loads. These methods are focused on the maximum loading that attacks a single position of the crest wall. In practice, crest walls have a finite length. Since the maximum loading does not occur at the same instant over the entire length of the crest wall for oblique waves, these methods overestimate the loading in the situation of oblique waves. Wave loads under oblique wave attack have been measured in physical model tests. A method to account for the effect of the finite length of crest walls has been developed, and design guidelines have been derived. The results of this study in combination with the existing methods in the literature to estimate the wave forces enable a more advanced design of crest walls. es_ES
dc.description.sponsorship The first author was financially supported by the Ministerio de Educacion, Ciencia y Deporte through the FPU program (Formacion de Profesorado Universitario) under grant FPU16/05081. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Crown wall es_ES
dc.subject Crest wall es_ES
dc.subject Oblique waves es_ES
dc.subject Rubble mound breakwaters es_ES
dc.subject Wave loading es_ES
dc.subject Forces es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Oblique Wave Attack on Rubble Mound Breakwater Crest Walls of Finite Length es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12020353 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Mares-Nasarre, P.; Van Gent, MR. (2020). Oblique Wave Attack on Rubble Mound Breakwater Crest Walls of Finite Length. Water. 12(2):1-21. https://doi.org/10.3390/w12020353 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12020353 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\401526 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004 es_ES
dc.description.references Jacobsen, N. G., van Gent, M. R. A., Capel, A., & Borsboom, M. (2018). Numerical prediction of integrated wave loads on crest walls on top of rubble mound structures. Coastal Engineering, 142, 110-124. doi:10.1016/j.coastaleng.2018.10.004 es_ES
dc.description.references Van Gent, M. R. A., & van der Werf, I. M. (2019). Influence of oblique wave attack on wave overtopping and forces on rubble mound breakwater crest walls. Coastal Engineering, 151, 78-96. doi:10.1016/j.coastaleng.2019.04.001 es_ES
dc.description.references A Monograph of Rubble Mound Breakwatershttps://repository.tudelft.nl/islandora/object/uuid%3A133be463-5f43-45cd-9115-3ef9ebe245b3 es_ES
dc.description.references Martin, F. L., Losada, M. A., & Medina, R. (1999). Wave loads on rubble mound breakwater crown walls. Coastal Engineering, 37(2), 149-174. doi:10.1016/s0378-3839(99)00019-8 es_ES
dc.description.references Nørgaard, J. Q. H., Andersen, T. L., & Burcharth, H. F. (2013). Wave loads on rubble mound breakwater crown walls in deep and shallow water wave conditions. Coastal Engineering, 80, 137-147. doi:10.1016/j.coastaleng.2013.06.003 es_ES
dc.description.references Report H3608. Physical Model Investigations on Coastal Structures with Shallow Foreshores; 2D Model Test with Single and Double-Peaked Wave Energy Spectrahttps://repository.tudelft.nl/islandora/object/uuid:1b4729de-2e86-4b8a-98d5-48d8e07d5902?collection=research es_ES
dc.description.references Mares-Nasarre, P., Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2019). Overtopping layer thickness and overtopping flow velocity on mound breakwaters. Coastal Engineering, 154, 103561. doi:10.1016/j.coastaleng.2019.103561 es_ES
dc.description.references Herrera, M. P., & Medina, J. R. (2015). Toe berm design for very shallow waters on steep sea bottoms. Coastal Engineering, 103, 67-77. doi:10.1016/j.coastaleng.2015.06.005 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem