Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchis, R. | es_ES |
dc.contributor.author | Díaz-Madroñero Boluda, Francisco Manuel | es_ES |
dc.contributor.author | López Jiménez, Petra Amparo | es_ES |
dc.contributor.author | Pérez-Sánchez, Modesto | es_ES |
dc.date.accessioned | 2020-05-22T03:02:44Z | |
dc.date.available | 2020-05-22T03:02:44Z | |
dc.date.issued | 2019-11-20 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144092 | |
dc.description.abstract | [EN] Currently, the management of water networks is key to increase their sustainability. This fact implies that water managers have to develop tools that ease the decision-making process in order to improve the efficiency of irrigation networks, as well as their exploitation costs. The present research proposes a mathematical programming model to optimize the selection of the water sources and the volume over time in water networks, minimizing the operation costs as a function of the water demand and the reservoir capacity. The model, which is based on fuzzy methods, improves the evaluation performed by water managers when they have to decide about the acquisition of the water resources under uncertain costs. Different fuzzy solution approaches have been applied and assessed in terms of model complexity and computational efficiency, showing the solution accomplished for each one. A comparison between different methods was applied in a real water network, reaching a 20% total cost reduction for the best solution. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Fuzzy techniques | es_ES |
dc.subject | Water management | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w11122432 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Sanchis, R.; Díaz-Madroñero Boluda, FM.; López Jiménez, PA.; Pérez-Sánchez, M. (2019). Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs. Water. 11(12):1-22. https://doi.org/10.3390/w11122432 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w11122432 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\397627 | es_ES |
dc.description.references | Biswas, A. K. (2004). Integrated Water Resources Management: A Reassessment. Water International, 29(2), 248-256. doi:10.1080/02508060408691775 | es_ES |
dc.description.references | Pahl-Wostl, C. (2006). Transitions towards adaptive management of water facing climate and global change. Water Resources Management, 21(1), 49-62. doi:10.1007/s11269-006-9040-4 | es_ES |
dc.description.references | Wu, K., & Zhang, L. (2014). Progress in the Development of Environmental Risk Assessment as a Tool for the Decision-Making Process. Journal of Service Science and Management, 07(02), 131-143. doi:10.4236/jssm.2014.72011 | es_ES |
dc.description.references | Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213 | es_ES |
dc.description.references | Hunink, J., Simons, G., Suárez-Almiñana, S., Solera, A., Andreu, J., Giuliani, M., … Bastiaanssen, W. (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water, 11(10), 1976. doi:10.3390/w11101976 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234 | es_ES |
dc.description.references | Corominas, J. (2010). Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua, 17(3). doi:10.4995/ia.2010.2977 | es_ES |
dc.description.references | Romero, L., Pérez-Sánchez, M., & Amparo López-Jiménez, P. (2017). Improvement of sustainability indicators when traditional water management changes: a case study in Alicante (Spain). AIMS Environmental Science, 4(3), 502-522. doi:10.3934/environsci.2017.3.502 | es_ES |
dc.description.references | Davies, E. G. R., & Simonovic, S. P. (2011). Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resources, 34(6), 684-700. doi:10.1016/j.advwatres.2011.02.010 | es_ES |
dc.description.references | ALCAMO, J., DÖLL, P., HENRICHS, T., KASPAR, F., LEHNER, B., RÖSCH, T., & SIEBERT, S. (2003). Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 48(3), 317-337. doi:10.1623/hysj.48.3.317.45290 | es_ES |
dc.description.references | Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327 | es_ES |
dc.description.references | Rahaman, M. M., & Varis, O. (2005). Integrated water resources management: evolution, prospects and future challenges. Sustainability: Science, Practice and Policy, 1(1), 15-21. doi:10.1080/15487733.2005.11907961 | es_ES |
dc.description.references | Markantonis, V., Reynaud, A., Karabulut, A., El Hajj, R., Altinbilek, D., Awad, I. M., … Bidoglio, G. (2019). Can the Implementation of the Water-Energy-Food Nexus Support Economic Growth in the Mediterranean Region? The Current Status and the Way Forward. Frontiers in Environmental Science, 7. doi:10.3389/fenvs.2019.00084 | es_ES |
dc.description.references | Food and Agriculture Organization (FAO)www.fao.org | es_ES |
dc.description.references | Directive 2000/60/EC of the European Parliament and of the Councilhttps://eur-lex.europa.eu/eli/dir/2000/60/oj | es_ES |
dc.description.references | Namany, S., Al-Ansari, T., & Govindan, R. (2019). Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. Journal of Cleaner Production, 225, 610-626. doi:10.1016/j.jclepro.2019.03.304 | es_ES |
dc.description.references | Archibald, T. W., & Marshall, S. E. (2018). Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environmental Modeling & Assessment, 23(6), 753-777. doi:10.1007/s10666-018-9628-0 | es_ES |
dc.description.references | Chen, S., Shao, D., Gu, W., Xu, B., Li, H., & Fang, L. (2017). An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agricultural Water Management, 186, 86-97. doi:10.1016/j.agwat.2017.03.001 | es_ES |
dc.description.references | Xie, Y. L., Xia, D. H., Huang, G. H., Li, W., & Xu, Y. (2015). A multistage stochastic robust optimization model with fuzzy probability distribution for water supply management under uncertainty. Stochastic Environmental Research and Risk Assessment, 31(1), 125-143. doi:10.1007/s00477-015-1164-8 | es_ES |
dc.description.references | Heumesser, C., Fuss, S., Szolgayová, J., Strauss, F., & Schmid, E. (2012). Investment in Irrigation Systems under Precipitation Uncertainty. Water Resources Management, 26(11), 3113-3137. doi:10.1007/s11269-012-0053-x | es_ES |
dc.description.references | Pereira-Cardenal, S. J., Mo, B., Riegels, N. D., Arnbjerg-Nielsen, K., & Bauer-Gottwein, P. (2015). Optimization of Multipurpose Reservoir Systems Using Power Market Models. Journal of Water Resources Planning and Management, 141(8), 04014100. doi:10.1061/(asce)wr.1943-5452.0000500 | es_ES |
dc.description.references | Kumari, S., & Mujumdar, P. P. (2017). Fuzzy Set–Based System Performance Evaluation of an Irrigation Reservoir System. Journal of Irrigation and Drainage Engineering, 143(5), 04017002. doi:10.1061/(asce)ir.1943-4774.0001155 | es_ES |
dc.description.references | Jairaj, P. G., & Vedula, S. (2000). Water Resources Management, 14(6), 457-472. doi:10.1023/a:1011117918943 | es_ES |
dc.description.references | Li, M., Guo, P., Singh, V. P., & Zhao, J. (2016). Irrigation Water Allocation Using an Inexact Two-Stage Quadratic Programming with Fuzzy Input under Climate Change. JAWRA Journal of the American Water Resources Association, 52(3), 667-684. doi:10.1111/1752-1688.12415 | es_ES |
dc.description.references | Bozorg-Haddad, O., Malmir, M., Mohammad-Azari, S., & Loáiciga, H. A. (2016). Estimation of farmers’ willingness to pay for water in the agricultural sector. Agricultural Water Management, 177, 284-290. doi:10.1016/j.agwat.2016.08.011 | es_ES |
dc.description.references | Raju, K. S., & Duckstein, L. (2003). Multiobjective fuzzy linear programming for sustainable irrigation planning: an Indian case study. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 7(6), 412-418. doi:10.1007/s00500-002-0230-6 | es_ES |
dc.description.references | Regulwar, D. G., & Gurav, J. B. (2012). Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment. Water Resources Management, 26(13), 3871-3892. doi:10.1007/s11269-012-0109-y | es_ES |
dc.description.references | Mula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912 | es_ES |
dc.description.references | Díaz-Madroñero, M., Mula, J., Jiménez, M., & Peidro, D. (2016). A rolling horizon approach for material requirement planning under fuzzy lead times. International Journal of Production Research, 55(8), 2197-2211. doi:10.1080/00207543.2016.1223382 | es_ES |
dc.description.references | Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045 | es_ES |
dc.description.references | Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003 | es_ES |
dc.description.references | Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research, 52(23), 6971-6988. doi:10.1080/00207543.2014.920115 | es_ES |
dc.description.references | Pérez-Sánchez, M., Díaz-Madroñero, M., Díaz-Madroñero, D.-M., … Josefa, J. (2017). Mathematical Programming Model for Procurement Selection in Water Irrigation Systems. A Case Study. Journal of Engineering Science and Technology Review, 10(6), 154-162. doi:10.25103/jestr.106.19 | es_ES |
dc.description.references | Herrera, F., & Verdegay, J. L. (1995). Three models of fuzzy integer linear programming. European Journal of Operational Research, 83(3), 581-593. doi:10.1016/0377-2217(93)e0338-x | es_ES |
dc.description.references | Herrera, F., & Verdegay, J. L. (1996). Fuzzy boolean programming problems with fuzzy costs: A general study. Fuzzy Sets and Systems, 81(1), 57-76. doi:10.1016/0165-0114(94)00324-6 | es_ES |
dc.description.references | Alavidoost, M. H., Babazadeh, H., & Sayyari, S. T. (2016). An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing, 40, 221-235. doi:10.1016/j.asoc.2015.11.025 | es_ES |
dc.description.references | Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010 | es_ES |
dc.description.references | Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143-161. doi:10.1016/0020-0255(81)90017-7 | es_ES |
dc.description.references | Lai, Y.-J., & Hwang, C.-L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133. doi:10.1016/0165-0114(92)90318-x | es_ES |
dc.description.references | Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3 | es_ES |
dc.description.references | Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6 | es_ES |
dc.description.references | Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B-141-B-164. doi:10.1287/mnsc.17.4.b141 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |