Mostrar el registro sencillo del ítem
dc.contributor.author | Ioos, R. | es_ES |
dc.contributor.author | Aloi, F. | es_ES |
dc.contributor.author | Piskur, B. | es_ES |
dc.contributor.author | Guinet, C. | es_ES |
dc.contributor.author | Mullett, M. | es_ES |
dc.contributor.author | Berbegal Martinez, Monica | es_ES |
dc.contributor.author | Bragança, H. | es_ES |
dc.contributor.author | Cacciola, S.O. | es_ES |
dc.contributor.author | Oskay, F. | es_ES |
dc.contributor.author | Cornejo, C. | es_ES |
dc.contributor.author | Adamson, K. | es_ES |
dc.contributor.author | Kacergius, A. | es_ES |
dc.contributor.author | Martínez-Álvarez, P. | es_ES |
dc.contributor.author | Nowakowska, J.A. | es_ES |
dc.contributor.author | Luchi, N. | es_ES |
dc.date.accessioned | 2020-05-22T03:02:48Z | |
dc.date.available | 2020-05-22T03:02:48Z | |
dc.date.issued | 2019-06-03 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144094 | |
dc.description.abstract | [EN] Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed. | es_ES |
dc.description.sponsorship | This work was supported by COST action FP1406 Pinestrength . The work of the Estonian team was supported by the Estonian Science Foundation grants PSG136 and IUT21-04. The work of Portuguese team from INIAV was financed by INIAV I.P. Institute. The work at U. Aveiro (Portugal) was financed by European Funds through COMPETE and National Funds through the Portuguese Foundation for Science and Technology (FCT) to CESAM (UID/AMB/50017/2013 POCI-01- 0145-FEDER-007638). The work of Slovenian team was financed through Slovenian Research Agency (P4-0107) and by the Slovenian Ministry of Agriculture, Forestry and Food (Public Forestry Service). The British work was financially supported by the Forestry Commission, UK. The French work was financially supported by the French Agency for Food, environmental and occupational health safety (ANSES). The work in New Zealand was funded by Operational Research Programmes, Ministry for Primary Industries, New Zealand. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Real-Time PCR | es_ES |
dc.subject | Polymerase-Chain-Reaction | es_ES |
dc.subject | Pitch Canker disease | es_ES |
dc.subject | Causal agent | es_ES |
dc.subject | Gibberella-Circinata | es_ES |
dc.subject | Quantification | es_ES |
dc.subject | Susceptibility | es_ES |
dc.subject | Plantations | es_ES |
dc.subject | Performance | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-019-44672-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147273/PT/Centre for Environmental and Marine Studies/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//POCI-01-0145-FEDER-007638/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//FP1406/EU/Pine pitch canker - strategies for management of Gibberella Circinata in greenhouses and forests (PINESTRENGTH)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Estonian Science Foundation//PSG136/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Estonian Science Foundation//IUT21-04/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Ioos, R.; Aloi, F.; Piskur, B.; Guinet, C.; Mullett, M.; Berbegal Martinez, M.; Bragança, H.... (2019). Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum. Scientific Reports. 9:1-17. https://doi.org/10.1038/s41598-019-44672-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-019-44672-8 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.pmid | 31160683 | es_ES |
dc.identifier.pmcid | PMC6546748 | es_ES |
dc.relation.pasarela | S\392063 | es_ES |
dc.contributor.funder | Estonian Science Foundation | es_ES |
dc.contributor.funder | Forestry Commission, Reino Unido | es_ES |
dc.contributor.funder | Slovenian Research Agency | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Ministry for Primary Industries, Nueva Zelanda | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Ministry of Agriculture, Forestry and Food, Eslovenia | es_ES |
dc.contributor.funder | Instituto Nacional de Investigação Agrária e Veterinária, Portugal | es_ES |
dc.contributor.funder | Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Francia | es_ES |
dc.description.references | Schmale, D. G. III & Gordon, T. R. Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathol. 52, 720–725 (2003). | es_ES |
dc.description.references | Gordon, T. R., Kirkpatrick, S. C., Aegerter, B. J., Wood, D. L. & Storer, A. J. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant Pathol. 55, 231–237 (2006). | es_ES |
dc.description.references | Martínez‐Álvarez, P., Pando, V. & Diez, J. J. Alternative species to replace Monterey pine plantations affected by pitch canker caused by Fusarium circinatum in northern Spain. Plant Pathol. 63, 1086–1094, https://doi.org/10.1111/ppa.12187 (2014). | es_ES |
dc.description.references | Wingfield, M. J. et al. Pitch canker caused by Fusarium circinatum - a growing threat to pine plantations and forests worldwide. Australas. Plant Path. 37, 319–334 (2008). | es_ES |
dc.description.references | Bezos, D., Martinez-Alvarez, P., Fernandez, M. & Diez, J. J. Epidemiology and management of pine pitch canker disease in Europe - a review. Balt. For. 23, 279–293 (2017). | es_ES |
dc.description.references | Landeras, E. et al. Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Dis. 89, 1015 (2005). | es_ES |
dc.description.references | Bragança, H., Diogo, E., Moniz, F. & Amaro, P. First report of pitch canker on pines caused by Fusarium circinatum in Portugal. Plant Dis. 93, 1079–1079, https://doi.org/10.1094/PDIS-93-10-1079A (2009). | es_ES |
dc.description.references | EFSA. Risk assessment of Gibberella circinata for the EU territory and identification and evaluation of risk management options. EFSA Journal 8, 1620 (2010). | es_ES |
dc.description.references | Carlucci, A., Colatruglio, L. & Frisullo, S. First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Dis. 91, 1683 (2007). | es_ES |
dc.description.references | Vettraino, A., Potting, R. & Raposo, R. EU legislation on forest plant health: an overview with a focus on Fusarium circinatum. Forests 9, 568 (2018). | es_ES |
dc.description.references | Möykkynen, T., Capretti, P. & Pukkala, T. Modelling the potential spread of Fusarium circinatum, the causal agent of pitch canker in Europe. Annals of Forest Sciences 72, 169–181 (2015). | es_ES |
dc.description.references | Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, https://doi.org/10.1373/clinchem.2008.112797 (2009). | es_ES |
dc.description.references | EPPO. PM 7/91(1): Gibberella circinata. EPPO Bull. 39, 298–309 (2009). | es_ES |
dc.description.references | ISTA. 7-009: Detection of Gibberella circinata on Pinus spp. (pine) and Pseudotsuga menziesii (Douglas-fir) seed. Validated Seed Health Testing Methods (2015). | es_ES |
dc.description.references | IPPC. ISPM 27, Diagnostic protocols for regulated pests, DP 22: Fusarium circinatum (2017). | es_ES |
dc.description.references | EPPO. PM 7/98 (2) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull. 44, 117–147, https://doi.org/10.1111/epp.12118 (2014). | es_ES |
dc.description.references | Nirenberg, H. I. & O’Donnell, K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90, 434–458 (1998). | es_ES |
dc.description.references | Britz, H., Coutinho, T. A., Wingfield, M. J. & Marasas, W. F. O. Validation of the description of Gibberella circinata and morphological differentiation of the anamorph Fusarium circinatum. Sydowia 54, 9–22 (2002). | es_ES |
dc.description.references | Mullett, M., Pérez-Sierra, A., Armengol, J. & Berbegal, M. Phenotypical and molecular characterisation of Fusarium circinatum: correlation with virulence and fungicide sensitivity. Forests 8, 458 (2017). | es_ES |
dc.description.references | Herron, D. A. et al. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Stud. Mycol. 80, 131–150, https://doi.org/10.1016/j.simyco.2014.12.001 (2015). | es_ES |
dc.description.references | Storer, G. & Clark, S. L. Association of the pitch canker fungus, Fusarium subglutinans f.sp. pini, with Monterey pine seeds and seedlings in California. Plant Pathol. 47, 649–656, https://doi.org/10.1046/j.1365-3059.1998.00288.x (1998). | es_ES |
dc.description.references | Schweigkofler, W., O’Donnell, K. & Garbelotto, M. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl. Environ. Microbiol. 70, 3512–3520 (2004). | es_ES |
dc.description.references | Ramsfield, T. D., Dobbie, K., Dick, M. A. & Ball, R. D. Polymerase chain reaction-based detection of Fusarium circinatum, the causal agent of pitch canker disease. Molecular Ecology Resources 8, 1270–1273 (2008). | es_ES |
dc.description.references | Ioos, R., Fourrier, C., Iancu, G. & Gordon, T. R. Sensitive Detection of Fusarium circinatum in Pine Seed by Combining an Enrichment Procedure with a Real-Time Polymerase Chain Reaction Using Dual-Labeled Probe Chemistry. Phytopathology 99, 582–590, https://doi.org/10.1094/PHYTO-99-5-0582 (2009). | es_ES |
dc.description.references | Dreaden, T. J., Smith, J. A., Barnard, E. L. & Blakeslee, G. Development and evaluation of a real-time PCR seed lot screening method for Fusarium circinatum, causal agent of pitch canker disease. For. Path. 42, 405–411, https://doi.org/10.1111/j.1439-0329.2012.00774.x (2012). | es_ES |
dc.description.references | Fourie, G. et al. Culture-independent detection and quantification of Fusarium circinatum in a pine-producing seedling nursery. Southern Forests: a Journal of Forest Science 76, 137–143, https://doi.org/10.2989/20702620.2014.899058 (2014). | es_ES |
dc.description.references | Lamarche, J. et al. Molecular detection of 10 of the most unwanted alien forest pathogens in Canada using Real-Time PCR. PLoS ONE 10, e0134265, https://doi.org/10.1371/journal.pone.0134265 (2015). | es_ES |
dc.description.references | Luchi, N., Pepori, A. L., Bartolini, P., Ioos, R. & Santini, A. Duplex real-time PCR assay for the simultaneous detection of Caliciopsis pinea and Fusarium circinatum in pine samples. Applied Microbiology and Biotechnology 102, 7135–7146, https://doi.org/10.1007/s00253-018-9184-1 (2018). | es_ES |
dc.description.references | Sandoval-Denis, M., Swart, W. J. & Crous, P. W. New Fusarium species from the Kruger National Park, South Africa. MycoKeys 34, https://doi.org/10.3897/mycokeys.34.25974 (2018). | es_ES |
dc.description.references | Steenkamp, E. T., Wingfield, B. D., Desjardins, A. E., Marasas, W. F. & Wingfield, M. J. Cryptic speciation in Fusarium subglutinans. Mycologia 94, 1032–1043 (2002). | es_ES |
dc.description.references | Garcia-Benitez, C. et al. Proficiency of real-time PCR detection of latent Monilinia spp. infection in nectarine flowers and fruit. Phytopathologia Mediterranea 56, 242–250 (2017). | es_ES |
dc.description.references | Ebentier, D. L. et al. Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Research 47, 6839–6848, https://doi.org/10.1016/j.watres.2013.01.060 (2013). | es_ES |
dc.description.references | Bustin, S. & Huggett, J. qPCR primer design revisited. Biomolecular Detection and Quantification 14, 19–28, https://doi.org/10.1016/j.bdq.2017.11.001 (2017). | es_ES |
dc.description.references | Grosdidier, M., Aguayo, J., Marçais, B. & Ioos, R. Detection of plant pathogens using real-time PCR: how reliable are late Ct values? Plant Pathol. 66, 359–367, https://doi.org/10.1111/ppa.12591 (2017). | es_ES |
dc.description.references | Al-Soud, W. A. & Rådström, P. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Applied and environmental microbiology 64, 3748–3753 (1998). | es_ES |
dc.description.references | Saunders, G. C., Dukes, J., Parkes, H. C. & Cornett, J. H. Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses. Clinical chemistry 47, 47–55 (2001). | es_ES |
dc.description.references | Boutigny, A.-L. et al. Optimization of a real-time PCR assay for the detection of the quarantine pathogen Melampsora medusae f. sp. deltoidae. Fungal Biology 117, 389–398, https://doi.org/10.1016/j.funbio.2013.04.001 (2013). | es_ES |
dc.description.references | Guinet, C., Fourrier-Jeandel, C., Cerf-Wendling, I. & Ioos, R. One-step detection of Monilinia fructicola, M. fructigena, and M. laxa on Prunus and Malus by a multiplex real-time PCR assay. Plant Dis. 100, 2465–2474, https://doi.org/10.1094/PDIS-05-16-0655-RE (2016). | es_ES |
dc.description.references | Aguayo, J. et al. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4. PLoS ONE 12, e0171767, https://doi.org/10.1371/journal.pone.0171767 (2017). | es_ES |
dc.description.references | Broeders, S. et al. Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science & Technology 37, 115–126, https://doi.org/10.1016/j.tifs.2014.03.008 (2014). | es_ES |
dc.description.references | Pelloux, H. et al. A second European collaborative study on polymerase chain reaction for Toxoplasma gondii, involving 15 teams. FEMS Microbiology Letters 165, 231–237, https://doi.org/10.1111/j.1574-6968.1998.tb13151.x (1998). | es_ES |
dc.description.references | Leslie, J. F. & Summerell, B. A. The Fusarium laboratory manual. (Blackwell Publishing, 2006). | es_ES |
dc.description.references | Ioos, R. et al. Test performance study of diagnostic procedures for identification and detection of Gibberella circinata in pine seeds in the framework of a EUPHRESCO project. EPPO Bull. 43, 267–275, https://doi.org/10.1111/epp.12037 (2013). | es_ES |
dc.description.references | Geiser, D. M. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004). | es_ES |
dc.description.references | White, T. J., Bruns, T., Lee, S. & Taylor, J. In PCR protocols: a guide to method and applications (eds Gelfand, D. H., Innis M. A., Sninsky, J. J. and White, T. J.) 315–322 (Academic Press, 1990). | es_ES |
dc.description.references | Nirenberg, H. I. A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany 59, 1599–1609 (1981). | es_ES |
dc.description.references | Chabirand, A., Loiseau, M., Renaudin, I. & Poliakoff, F. Data processing of qualitative results from an interlaboratory comparison for the detection of “Flavescence dorée” phytoplasma: How the use of statistics can improve the reliability of the method validation process in plant pathology. PLoS ONE 12, e0175247, https://doi.org/10.1371/journal.pone.0175247 (2017). | es_ES |
dc.description.references | Loreti, S. et al. Performance of diagnostic tests for the detection and identification of Pseudomonas syringae pv. actinidiae (Psa) from woody samples. European Journal of Plant Pathology, https://doi.org/10.1007/s10658-018-1509-5 (2018). | es_ES |
dc.description.references | International Standardization Organization. ISO 16140:2003 Microbiology of food and animal feeding stuffs - Protocol for the validation of alternative methods (2003). | es_ES |
dc.description.references | Langton, S., Chevennement, R., Nagelkerke, N. & Lombard, B. Analysing collaborative trials for qualitative microbiological methods: accordance and concordance. International Journal of Food Microbiology 79, 175–181 (2002). | es_ES |
dc.description.references | R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2014). R Foundation for Statistical Computing (2017). | es_ES |
dc.description.references | Wickham, H. ggplot2 : elegant graphics for data analysis. (Springer, 2016). | es_ES |