Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Girona, Ivan | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2020-05-22T03:02:55Z | |
dc.date.available | 2020-05-22T03:02:55Z | |
dc.date.issued | 2019-08-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144099 | |
dc.description.abstract | [EN] In this manuscript, we propose several iterative methods for solving nonlinear equations whose common origin is the classical Chebyshev's method, using fractional derivatives in their iterative expressions. Due to the symmetric duality of left and right derivatives, we work with right-hand side Caputo and Riemann-Liouville fractional derivatives. To increase as much as possible the order of convergence of the iterative scheme, some improvements are made, resulting in one of them being of 3 alpha-th order. Some numerical examples are provided, along with an study of the dependence on initial estimations on several test problems. This results in a robust performance for values of alpha close to one and almost any initial estimation. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Ciencia, Innovacion y Universidades under grants PGC2018-095896-B-C22 and by Generalitat Valenciana PROMETEO/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Symmetry (Basel) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Chebyshev s iterative method | es_ES |
dc.subject | Fractional derivative | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A Variant of Chebyshev's Method with 3 alpha th-Order of Convergence by Using Fractional Derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/sym11081017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Girona, I.; Torregrosa Sánchez, JR. (2019). A Variant of Chebyshev's Method with 3 alpha th-Order of Convergence by Using Fractional Derivatives. Symmetry (Basel). 11(8):1-11. https://doi.org/10.3390/sym11081017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/sym11081017 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2073-8994 | es_ES |
dc.relation.pasarela | S\393520 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134 | es_ES |
dc.description.references | Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028 | es_ES |
dc.description.references | Caputo, M. C., & Torres, D. F. M. (2015). Duality for the left and right fractional derivatives. Signal Processing, 107, 265-271. doi:10.1016/j.sigpro.2014.09.026 | es_ES |
dc.description.references | Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computation, 186(1), 286-293. doi:10.1016/j.amc.2006.07.102 | es_ES |
dc.description.references | Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061 | es_ES |