Mostrar el registro sencillo del ítem
dc.contributor.author | Cabrera-García, Alejandro | es_ES |
dc.contributor.author | Checa-Chavarria, Elisa | es_ES |
dc.contributor.author | Pacheco-Torres, Jesús | es_ES |
dc.contributor.author | Bernabeu-Sanz, Angela | es_ES |
dc.contributor.author | Vidal Moya, José Alejandro | es_ES |
dc.contributor.author | Rivero-Buceta, Eva María | es_ES |
dc.contributor.author | Sastre Navarro, German Ignacio | es_ES |
dc.contributor.author | Fernandez Jover, Eduardo | es_ES |
dc.contributor.author | Botella Asuncion, Pablo | es_ES |
dc.date.accessioned | 2020-05-22T03:02:56Z | |
dc.date.available | 2020-05-22T03:02:56Z | |
dc.date.issued | 2018-04-14 | es_ES |
dc.identifier.issn | 2040-3364 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144100 | |
dc.description.abstract | [EN] The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T-1-T-2 dual-mode relaxivity requires the accurate assembly of T-1 and T-2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)(4)[Fe(CN)(6)] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)(4)[Fe(CN)(6)]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T-1- and T-2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application. | es_ES |
dc.description.sponsorship | Financial support of the Spanish Ministry of Economy and Competitiveness (projects TEC2016-80976-R and SEV-2016-0683) is gratefully acknowledged. Dr E. M. Rivero thanks the Cursol Foundation for a post-doctoral scholarship. A. C. G. also thanks the La Caixa Foundation for a Ph.D. scholarship. We fully appreciate the assistance of the Electron Microscopy Service of the UPV and INSCANNER S.L. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Nanoscale | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Engineered Contrast Agents in a Single Structure for T1-T2 Dual Magnetic Resonance Imaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c7nr07948f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Cabrera-García, A.; Checa-Chavarria, E.; Pacheco-Torres, J.; Bernabeu-Sanz, A.; Vidal Moya, JA.; Rivero-Buceta, EM.; Sastre Navarro, GI.... (2018). Engineered Contrast Agents in a Single Structure for T1-T2 Dual Magnetic Resonance Imaging. Nanoscale. 10(14):6349-6360. https://doi.org/10.1039/c7nr07948f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c7nr07948f | es_ES |
dc.description.upvformatpinicio | 6349 | es_ES |
dc.description.upvformatpfin | 6360 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 14 | es_ES |
dc.identifier.pmid | 29560985 | es_ES |
dc.relation.pasarela | S\355371 | es_ES |
dc.contributor.funder | Fundación Cursol | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Bolan, P. J., Nelson, M. T., Yee, D., & Garwood, M. (2005). Imaging in breast cancer: Magnetic resonance spectroscopy. Breast Cancer Research, 7(4). doi:10.1186/bcr1202 | es_ES |
dc.description.references | Mitchell, R. E., Katz, M. H., McKiernan, J. M., & Benson, M. C. (2005). The evaluation and staging of clinically localized prostate cancer. Nature Clinical Practice Urology, 2(8), 356-357. doi:10.1038/ncpuro0260 | es_ES |
dc.description.references | Colombo, M., Carregal-Romero, S., Casula, M. F., Gutiérrez, L., Morales, M. P., Böhm, I. B., … Parak, W. J. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews, 41(11), 4306. doi:10.1039/c2cs15337h | es_ES |
dc.description.references | Mi, P., Kokuryo, D., Cabral, H., Wu, H., Terada, Y., Saga, T., … Kataoka, K. (2016). A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nature Nanotechnology, 11(8), 724-730. doi:10.1038/nnano.2016.72 | es_ES |
dc.description.references | Cheng, W., Ping, Y., Zhang, Y., Chuang, K.-H., & Liu, Y. (2013). Magnetic Resonance Imaging (MRI) Contrast Agents for Tumor Diagnosis. Journal of Healthcare Engineering, 4(1), 23-46. doi:10.1260/2040-2295.4.1.23 | es_ES |
dc.description.references | Lauffer, R. B. (1987). Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Reviews, 87(5), 901-927. doi:10.1021/cr00081a003 | es_ES |
dc.description.references | Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chemical Reviews, 99(9), 2293-2352. doi:10.1021/cr980440x | es_ES |
dc.description.references | Davis, M. E., Chen, Z., & Shin, D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7(9), 771-782. doi:10.1038/nrd2614 | es_ES |
dc.description.references | Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 41(7), 2575-2589. doi:10.1039/c1cs15248c | es_ES |
dc.description.references | Hasebroock, K. M., & Serkova, N. J. (2009). Toxicity of MRI and CT contrast agents. Expert Opinion on Drug Metabolism & Toxicology, 5(4), 403-416. doi:10.1517/17425250902873796 | es_ES |
dc.description.references | Khawaja, A. Z., Cassidy, D. B., Al Shakarchi, J., McGrogan, D. G., Inston, N. G., & Jones, R. G. (2015). Revisiting the risks of MRI with Gadolinium based contrast agents—review of literature and guidelines. Insights into Imaging, 6(5), 553-558. doi:10.1007/s13244-015-0420-2 | es_ES |
dc.description.references | Lee, N., Yoo, D., Ling, D., Cho, M. H., Hyeon, T., & Cheon, J. (2015). Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 115(19), 10637-10689. doi:10.1021/acs.chemrev.5b00112 | es_ES |
dc.description.references | Zhou, Z., Bai, R., Munasinghe, J., Shen, Z., Nie, L., & Chen, X. (2017). T1–T2 Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS Nano, 11(6), 5227-5232. doi:10.1021/acsnano.7b03075 | es_ES |
dc.description.references | Shin, T.-H., Choi, Y., Kim, S., & Cheon, J. (2015). Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews, 44(14), 4501-4516. doi:10.1039/c4cs00345d | es_ES |
dc.description.references | Bae, K. H., Kim, Y. B., Lee, Y., Hwang, J., Park, H., & Park, T. G. (2010). Bioinspired Synthesis and Characterization of Gadolinium-Labeled Magnetite Nanoparticles for Dual ContrastT1- andT2-Weighted Magnetic Resonance Imaging. Bioconjugate Chemistry, 21(3), 505-512. doi:10.1021/bc900424u | es_ES |
dc.description.references | Peng, Y.-K., Lui, C. N. P., Chen, Y.-W., Chou, S.-W., Raine, E., Chou, P.-T., … Tsang, S. C. E. (2017). Engineering of Single Magnetic Particle Carrier for Living Brain Cell Imaging: A Tunable T1-/T2-/Dual-Modal Contrast Agent for Magnetic Resonance Imaging Application. Chemistry of Materials, 29(10), 4411-4417. doi:10.1021/acs.chemmater.7b00884 | es_ES |
dc.description.references | Choi, J., Lee, J.-H., Shin, T.-H., Song, H.-T., Kim, E. Y., & Cheon, J. (2010). Self-Confirming «AND» Logic Nanoparticles for Fault-Free MRI. Journal of the American Chemical Society, 132(32), 11015-11017. doi:10.1021/ja104503g | es_ES |
dc.description.references | Shin, T.-H., Choi, J., Yun, S., Kim, I.-S., Song, H.-T., Kim, Y., … Cheon, J. (2014). T1andT2Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano, 8(4), 3393-3401. doi:10.1021/nn405977t | es_ES |
dc.description.references | Cheng, K., Yang, M., Zhang, R., Qin, C., Su, X., & Cheng, Z. (2014). Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging. ACS Nano, 8(10), 9884-9896. doi:10.1021/nn500188y | es_ES |
dc.description.references | Zhou, Z., Huang, D., Bao, J., Chen, Q., Liu, G., Chen, Z., … Gao, J. (2012). A Synergistically EnhancedT1-T2Dual-Modal Contrast Agent. Advanced Materials, 24(46), 6223-6228. doi:10.1002/adma.201203169 | es_ES |
dc.description.references | Huang, G., Li, H., Chen, J., Zhao, Z., Yang, L., Chi, X., … Gao, J. (2014). Tunable T1and T2contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale, 6(17), 10404. doi:10.1039/c4nr02680b | es_ES |
dc.description.references | Perrier, M., Kenouche, S., Long, J., Thangavel, K., Larionova, J., Goze-Bac, C., … Guari, Y. (2013). Investigation on NMR Relaxivity of Nano-Sized Cyano-Bridged Coordination Polymers. Inorganic Chemistry, 52(23), 13402-13414. doi:10.1021/ic401710j | es_ES |
dc.description.references | Perera, V. S., Yang, L. D., Hao, J., Chen, G., Erokwu, B. O., Flask, C. A., … Huang, S. D. (2014). Biocompatible Nanoparticles of KGd(H2O)2[Fe(CN)6]·H2O with Extremely HighT1-Weighted Relaxivity Owing to Two Water Molecules Directly Bound to the Gd(III) Center. Langmuir, 30(40), 12018-12026. doi:10.1021/la501985p | es_ES |
dc.description.references | Cai, X., Gao, W., Ma, M., Wu, M., Zhang, L., Zheng, Y., … Shi, J. (2015). A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity. Advanced Materials, 27(41), 6382-6389. doi:10.1002/adma.201503381 | es_ES |
dc.description.references | Yang, L., Zhou, Z., Liu, H., Wu, C., Zhang, H., Huang, G., … Gao, J. (2015). Europium-engineered iron oxide nanocubes with high T1and T2contrast abilities for MRI in living subjects. Nanoscale, 7(15), 6843-6850. doi:10.1039/c5nr00774g | es_ES |
dc.description.references | Cabrera-García, A., Vidal-Moya, A., Bernabeu, Á., Sánchez-González, J., Fernández, E., & Botella, P. (2015). Gd–Si oxide mesoporous nanoparticles with pre-formed morphology prepared from a Prussian blue analogue template. Dalton Transactions, 44(31), 14034-14041. doi:10.1039/c5dt01928a | es_ES |
dc.description.references | Cabrera-García, A., Vidal-Moya, A., Bernabeu, Á., Pacheco-Torres, J., Checa-Chavarria, E., Fernández, E., & Botella, P. (2016). Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging. Nanomaterials, 6(6), 109. doi:10.3390/nano6060109 | es_ES |
dc.description.references | Botella, P., Corma, A., & Quesada, M. (2012). Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs. Journal of Materials Chemistry, 22(13), 6394. doi:10.1039/c2jm16291a | es_ES |
dc.description.references | Mascharak, P. K. (1986). Convenient synthesis of tris(tetraethylammonium) hexacyanoferrate(III) and its use as an oxidant with tunable redox potential. Inorganic Chemistry, 25(3), 245-247. doi:10.1021/ic00223a001 | es_ES |
dc.description.references | Clemments, A. M., Muniesa, C., Landry, C. C., & Botella, P. (2014). Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Adv., 4(55), 29134-29138. doi:10.1039/c4ra03277b | es_ES |
dc.description.references | Oyane, A., Kim, H.-M., Furuya, T., Kokubo, T., Miyazaki, T., & Nakamura, T. (2003). Preparation and assessment of revised simulated body fluids. Journal of Biomedical Materials Research, 65A(2), 188-195. doi:10.1002/jbm.a.10482 | es_ES |
dc.description.references | Blüml, S., Schad, L. R., Stepanow, B., & Lorenz, W. J. (1993). Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magnetic Resonance in Medicine, 30(3), 289-295. doi:10.1002/mrm.1910300304 | es_ES |
dc.description.references | Hennig, J., & Friedburg, H. (1988). Clinical applications and methodological developments of the RARE technique. Magnetic Resonance Imaging, 6(4), 391-395. doi:10.1016/0730-725x(88)90475-4 | es_ES |
dc.description.references | Hennig, J., Nauerth, A., & Friedburg, H. (1986). RARE imaging: A fast imaging method for clinical MR. Magnetic Resonance in Medicine, 3(6), 823-833. doi:10.1002/mrm.1910030602 | es_ES |
dc.description.references | Yamada, M., & Yonekura, S. (2009). Nanometric Metal−Organic Framework of Ln[Fe(CN)6]: Morphological Analysis and Thermal Conversion Dynamics by Direct TEM Observation. The Journal of Physical Chemistry C, 113(52), 21531-21537. doi:10.1021/jp907180e | es_ES |
dc.description.references | Navarro, M. C., Pannunzio-Miner, E. V., Pagola, S., Gómez, M. I., & Carbonio, R. E. (2005). Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. Journal of Solid State Chemistry, 178(3), 847-854. doi:10.1016/j.jssc.2004.11.026 | es_ES |
dc.description.references | Ding, Y., Chu, X., Hong, X., Zou, P., & Liu, Y. (2012). The infrared fingerprint signals of silica nanoparticles and its application in immunoassay. Applied Physics Letters, 100(1), 013701. doi:10.1063/1.3673549 | es_ES |
dc.description.references | Botella, P., Abasolo, I., Fernández, Y., Muniesa, C., Miranda, S., Quesada, M., … Corma, A. (2011). Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. Journal of Controlled Release, 156(2), 246-257. doi:10.1016/j.jconrel.2011.06.039 | es_ES |
dc.description.references | Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M., Lee, I. S., … Hyeon, T. (2007). Development of aT1 Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles. Angewandte Chemie International Edition, 46(28), 5397-5401. doi:10.1002/anie.200604775 | es_ES |
dc.description.references | Deng, Y., Li, E., Cheng, X., Zhu, J., Lu, S., Ge, C., … Pan, Y. (2016). Facile preparation of hybrid core–shell nanorods for photothermal and radiation combined therapy. Nanoscale, 8(7), 3895-3899. doi:10.1039/c5nr09102k | es_ES |
dc.description.references | Bottrill, M., Kwok, L., & Long, N. J. (2006). Lanthanides in magnetic resonance imaging. Chemical Society Reviews, 35(6), 557. doi:10.1039/b516376p | es_ES |
dc.description.references | Zhang, W., Martinelli, J., Peters, J. A., van Hengst, J. M. A., Bouwmeester, H., Kramer, E., … Djanashvili, K. (2017). Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications. ACS Applied Materials & Interfaces, 9(28), 23458-23465. doi:10.1021/acsami.7b05912 | es_ES |
dc.description.references | Li, Y., Chen, T., Tan, W., & Talham, D. R. (2014). Size-Dependent MRI Relaxivity and Dual Imaging with Eu0.2Gd0.8PO4·H2O Nanoparticles. Langmuir, 30(20), 5873-5879. doi:10.1021/la500602x | es_ES |
dc.description.references | T. L. Riss , R. A.Moravec , A. L.Niles , S.Duellman , H. A.Benink , T. J.Worzella and L.Minor , Cell Viability Assays , in Assay Guidance Manual , Eli Lilly & Company and the National Center for Advancing Translational Sciences , Bethesda, MD , 2012 | es_ES |
dc.description.references | Mahmoudi, M., Lynch, I., Ejtehadi, M. R., Monopoli, M. P., Bombelli, F. B., & Laurent, S. (2011). Protein−Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 111(9), 5610-5637. doi:10.1021/cr100440g | es_ES |
dc.description.references | Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2010). Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 6(16), 1794-1805. doi:10.1002/smll.201000538 | es_ES |