Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchis, R. | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.date.accessioned | 2020-05-22T03:03:03Z | |
dc.date.available | 2020-05-22T03:03:03Z | |
dc.date.issued | 2019-08-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144103 | |
dc.description.abstract | [EN] Enterprise resilience is a key capacity to guarantee enterprises¿ long-term continuity. This paper proposes a quantitative approach to enhance enterprise resilience by selecting optimal preventive actions to be activated to cushion the impact of disruptive events and to improve preparedness capability, one of the pillars of the enterprise resilience capacity. The proposed algorithms combine the dynamic programming approach with attenuation formulas to model real improvements when a combined set of preventive actions is activated for the same disruptive event. A numerical example is presented that shows remarkable reductions in the expected annual cost due to potential disruptive events. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Enterprise resilience | es_ES |
dc.subject | Preventive actions | es_ES |
dc.subject | Attenuation formulas | es_ES |
dc.subject | Dynamic programming | es_ES |
dc.subject | Optimization algorithm | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Enterprise Resilience Assessment A Quantitative Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su11164327 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Sanchis, R.; Poler, R. (2019). Enterprise Resilience Assessment A Quantitative Approach. Sustainability. 11(16):1-13. https://doi.org/10.3390/su11164327 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su11164327 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\392533 | es_ES |
dc.description.references | Baghersad, M., & Zobel, C. W. (2015). Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors. International Journal of Production Economics, 168, 71-80. doi:10.1016/j.ijpe.2015.06.011 | es_ES |
dc.description.references | Cagliano, A. C., De Marco, A., Grimaldi, S., & Rafele, C. (2012). An integrated approach to supply chain risk analysis. Journal of Risk Research, 15(7), 817-840. doi:10.1080/13669877.2012.666757 | es_ES |
dc.description.references | Vanpoucke, E., Boyer, K. K., & Vereecke, A. (2009). Supply chain information flow strategies: an empirical taxonomy. International Journal of Operations & Production Management, 29(12), 1213-1241. doi:10.1108/01443570911005974 | es_ES |
dc.description.references | Chaudhuri, A., Boer, H., & Taran, Y. (2018). Supply chain integration, risk management and manufacturing flexibility. International Journal of Operations & Production Management, 38(3), 690-712. doi:10.1108/ijopm-08-2015-0508 | es_ES |
dc.description.references | Oliva, F. L. (2016). A maturity model for enterprise risk management. International Journal of Production Economics, 173, 66-79. doi:10.1016/j.ijpe.2015.12.007 | es_ES |
dc.description.references | Hendry, L. C., Stevenson, M., MacBryde, J., Ball, P., Sayed, M., & Liu, L. (2019). Local food supply chain resilience to constitutional change: the Brexit effect. International Journal of Operations & Production Management, 39(3), 429-453. doi:10.1108/ijopm-03-2018-0184 | es_ES |
dc.description.references | Prior, T., & Hagmann, J. (2013). Measuring resilience: methodological and political challenges of a trend security concept. Journal of Risk Research, 17(3), 281-298. doi:10.1080/13669877.2013.808686 | es_ES |
dc.description.references | Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1), 1-23. doi:10.1146/annurev.es.04.110173.000245 | es_ES |
dc.description.references | Haimes, Y. Y. (2009). On the Definition of Resilience in Systems. Risk Analysis, 29(4), 498-501. doi:10.1111/j.1539-6924.2009.01216.x | es_ES |
dc.description.references | Doorn, N. (2015). Resilience indicators: opportunities for including distributive justice concerns in disaster management. Journal of Risk Research, 20(6), 711-731. doi:10.1080/13669877.2015.1100662 | es_ES |
dc.description.references | Scholz, R. W., Blumer, Y. B., & Brand, F. S. (2012). Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective. Journal of Risk Research, 15(3), 313-330. doi:10.1080/13669877.2011.634522 | es_ES |
dc.description.references | Reyes Levalle, R., & Nof, S. Y. (2015). Resilience by teaming in supply network formation and re-configuration. International Journal of Production Economics, 160, 80-93. doi:10.1016/j.ijpe.2014.09.036 | es_ES |
dc.description.references | Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171, 116-133. doi:10.1016/j.ijpe.2015.10.023 | es_ES |
dc.description.references | Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. doi:10.1108/09574090910954873 | es_ES |
dc.description.references | Comfort, L. K., Sungu, Y., Johnson, D., & Dunn, M. (2001). Complex Systems in Crisis: Anticipation and Resilience in Dynamic Environments. Journal of Contingencies and Crisis Management, 9(3), 144-158. doi:10.1111/1468-5973.00164 | es_ES |
dc.description.references | Ayyub, B. M. (2013). Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making. Risk Analysis, 34(2), 340-355. doi:10.1111/risa.12093 | es_ES |
dc.description.references | Cox Jr., L. A. T. (2012). Community Resilience and Decision Theory Challenges for Catastrophic Events. Risk Analysis, 32(11), 1919-1934. doi:10.1111/j.1539-6924.2012.01881.x | es_ES |
dc.description.references | Schmitt, A. J., & Singh, M. (2012). A quantitative analysis of disruption risk in a multi-echelon supply chain. International Journal of Production Economics, 139(1), 22-32. doi:10.1016/j.ijpe.2012.01.004 | es_ES |
dc.description.references | Dabhilkar, M., Birkie, S. E., & Kaulio, M. (2016). Supply-side resilience as practice bundles: a critical incident study. International Journal of Operations & Production Management, 36(8), 948-970. doi:10.1108/ijopm-12-2014-0614 | es_ES |
dc.description.references | Dormady, N., Roa-Henriquez, A., & Rose, A. (2019). Economic resilience of the firm: A production theory approach. International Journal of Production Economics, 208, 446-460. doi:10.1016/j.ijpe.2018.07.017 | es_ES |
dc.description.references | Polyviou, M., Croxton, K. L., & Knemeyer, A. M. (2019). Resilience of medium-sized firms to supply chain disruptions: the role of internal social capital. International Journal of Operations & Production Management, 40(1), 68-91. doi:10.1108/ijopm-09-2017-0530 | es_ES |
dc.description.references | The Ripple Effect—How Manufacturing and Retail Executives View the Growing Challenge of Supply Chain Risk www2.deloitte.com/us/en/pages/operations/articles/supply-chain-risk-ripple-effect.html | es_ES |
dc.description.references | Risk Ranking 2013–2015 http://www.ey.com/GL/en/Services/Advisory/Business-Pulse--top-10-risks-and-opportunities | es_ES |
dc.description.references | Global Risk Management Survey—Executive Summary www.aon.com/2017-global-risk-management-survey/pdfs/2017-Aon-Global-Risk-Management-Survey-Full-Report-062617.pdf | es_ES |
dc.description.references | The State of Enterprise Resilience Survey 2016/2017 www.controlrisks.com/our-thinking/insights/reports/the-state-of-enterprise-resilience-survey-2016-2017 | es_ES |
dc.description.references | 20th CEO Survey www.pwc.com/gx/en/ceo-survey/2017/pwc-ceo-20th-survey-report-2017.pdf | es_ES |
dc.description.references | BCI Supply Chain Resilience Report 2018 www.thebci.org/uploads/assets/uploaded/c50072bf-df5c-4c98-a5e1876aafb15bd0.pdf | es_ES |
dc.description.references | The global risks report 2019 www.weforum.org/reports/the-global-risks-report-2019 | es_ES |
dc.description.references | Madni, A. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience Engineering. IEEE Systems Journal, 3(2), 181-191. doi:10.1109/jsyst.2009.2017397 | es_ES |
dc.description.references | Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). ENSURING SUPPLY CHAIN RESILIENCE: DEVELOPMENT OF A CONCEPTUAL FRAMEWORK. Journal of Business Logistics, 31(1), 1-21. doi:10.1002/j.2158-1592.2010.tb00125.x | es_ES |
dc.description.references | Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-516. doi:10.1090/s0002-9904-1954-09848-8 | es_ES |
dc.description.references | Cord, J. (1964). A Method for Allocating Funds to Investment Projects when Returns are Subject to Uncertainty. Management Science, 10(2), 335-341. doi:10.1287/mnsc.10.2.335 | es_ES |
dc.description.references | Weingartner, H. M. (1966). Capital Budgeting of Interrelated Projects: Survey and Synthesis. Management Science, 12(7), 485-516. doi:10.1287/mnsc.12.7.485 | es_ES |
dc.description.references | Weingartner, H. M., & Ness, D. N. (1967). Methods for the Solution of the Multidimensional 0/1 Knapsack Problem. Operations Research, 15(1), 83-103. doi:10.1287/opre.15.1.83 | es_ES |
dc.description.references | Nemhauser, G. L., & Ullmann, Z. (1969). Discrete Dynamic Programming and Capital Allocation. Management Science, 15(9), 494-505. doi:10.1287/mnsc.15.9.494 | es_ES |
dc.description.references | Boyer, V., Baz, D. E., & Elkihel, M. (2010). Solution of multidimensional knapsack problems via cooperation of dynamic programming and branch and bound. European J. of Industrial Engineering, 4(4), 434. doi:10.1504/ejie.2010.035653 | es_ES |
dc.description.references | Skiena, S. S. (1999). Who is interested in algorithms and why? ACM SIGACT News, 30(3), 65-74. doi:10.1145/333623.333627 | es_ES |
dc.description.references | Chou, T.-C., & Talalay, P. (1983). Analysis of combined drug effects: a new look at a very old problem. Trends in Pharmacological Sciences, 4, 450-454. doi:10.1016/0165-6147(83)90490-x | es_ES |
dc.description.references | Chou, T.-C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27-55. doi:10.1016/0065-2571(84)90007-4 | es_ES |
dc.description.references | Belen’kii, M. S., & Schinazi, R. F. (1994). Multiple drug effect analysis with confidence interval. Antiviral Research, 25(1), 1-11. doi:10.1016/0166-3542(94)90089-2 | es_ES |
dc.description.references | Glossary of Terms and Symbols Used in Pharmacology. Pharmacology and Experimental Therapeutics Department at Boston University School of Medicine http://www.bumc.bu.edu/busm-pm/academics/resources/glossary/ | es_ES |
dc.description.references | Foucquier, J., & Guedj, M. (2015). Analysis of drug combinations: current methodological landscape. Pharmacology Research & Perspectives, 3(3), e00149. doi:10.1002/prp2.149 | es_ES |
dc.description.references | Tallarida, R. J. (2011). Quantitative Methods for Assessing Drug Synergism. Genes & Cancer, 2(11), 1003-1008. doi:10.1177/1947601912440575 | es_ES |