- -

Temperature Assessment Of Microwave-Enhanced Heating Processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature Assessment Of Microwave-Enhanced Heating Processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Baños, Beatriz es_ES
dc.contributor.author Jimenez-Reinosa, Julian es_ES
dc.contributor.author Penaranda-Foix, Felipe L. es_ES
dc.contributor.author Fernandez, José F. es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.date.accessioned 2020-05-23T03:01:26Z
dc.date.available 2020-05-23T03:01:26Z
dc.date.issued 2019-07-25 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144223
dc.description.abstract [EN] In this study, real-time and in-situ permittivity measurements under intense microwave electromagnetic fields are proposed as a powerful technique for the study of microwave-enhanced thermal processes in materials. In order to draw reliable conclusions about the temperatures at which transformations occur, we address how to accurately measure the bulk temperature of the samples under microwave irradiation. A new temperature calibration method merging data from four independent techniques is developed to obtain the bulk temperature as a function of the surface temperature in thermal processes under microwave conditions. Additionally, other analysis techniques such as Differential Thermal Analysis (DTA) or Raman spectroscopy are correlated to dielectric permittivity measurements and the temperatures of thermal transitions observed using each technique are compared. Our findings reveal that the combination of all these procedures could help prove the existence of specific non-thermal microwave effects in a scientifically meaningful way. es_ES
dc.description.sponsorship The authors wish to thank the project MAT2017-86450-C4-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrical-conductivity es_ES
dc.subject Dielectric analysis es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Temperature Assessment Of Microwave-Enhanced Heating Processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-47296-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86450-C4-1-R/ES/DISEÑO DE PROCESOS DE SINTERIZACION EN FRIO PARA NUEVOS MATERIALES NANOESTRUCTURADOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Baños, B.; Jimenez-Reinosa, J.; Penaranda-Foix, FL.; Fernandez, JF.; Catalá Civera, JM. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports. 9:1-10. https://doi.org/10.1038/s41598-019-47296-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-47296-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 31346250 es_ES
dc.identifier.pmcid PMC6658534 es_ES
dc.relation.pasarela S\400179 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Zhou, J. et al. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 6, 25149 (2016). es_ES
dc.description.references Clark, D. E., Folz, D. C. & West, J. K. Processing materials with microwave energy. Mater. Sci. Eng. A287, 153–158 (2000). es_ES
dc.description.references Thostenson, E. T. & Chou, T. W. Microwave processing: fundamentals and applications. Composites A30(9), 1055–1071 (1999). es_ES
dc.description.references Çengel, Y. A. Green thermodynamics. Int. J. Energy Res. 31, 1088–1104 (2007). es_ES
dc.description.references Adam, D. Out of the kitchen. Nature 421, 571–572 (2003). es_ES
dc.description.references Horikoshi, S., Watanabe, T., Narita, A., Suzuki, Y. & Serpone, N. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Sci. Rep. 8, 5151 (2018). es_ES
dc.description.references Wada, Y. et al. Smelting magnesium metal using a microwave pidgeon method. Sci. Rep. 7, 46512 (2017). es_ES
dc.description.references Kappe, C. O., Pieber, B. & Dallinger, D. Microwave effects in organic synthesis: Myth or reality? Angew. Chem., Int. Ed. 52, 1088–1094 (2013). es_ES
dc.description.references Ma, J. Master equation analysis of thermal and nonthermal microwave effects. J. Phys. Chem. A. 120, 7989–7997 (2016). es_ES
dc.description.references Mishra, R. R. & Sharma, A. K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Comp. Part A. 81, 78–97 (2016). es_ES
dc.description.references Sun, J., Wang, W. & Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 9, 231 (2016). es_ES
dc.description.references Liu, W. et al. Discussion on microwave-matter interaction mechanisms by in situ observation of “core-shell” microstructure during microwave sintering. Materials. 9, 120 (2016). es_ES
dc.description.references Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M. & Fernández, J. F. A step ahead on efficient microwave heating for Kaolinite. Appl. Clay Sci. 168, 237–243 (2019). es_ES
dc.description.references Naito, A., Makino, Y., Tasei, Y. & Kawamura, I. Photoirradiation and microwave irradiation NMR spectroscopy in Experimental Approaches of NMR Spectroscopy (ed. The Nuclear Magnetic Resonance Society of Japan) 135-170 (Springer, 2017). es_ES
dc.description.references Schmink, J. R. & Leadbeater, N. E. Probing “microwave effects” using Raman spectroscopy. Org Biomol Chem. 7(18), 3842–3846 (2009). es_ES
dc.description.references Vaucher, S., Catala-Civera, J. M., Sarua, A., Pomeroy, J. & Kuball, M. Phase selectivity of microwave heating evidenced by Raman spectroscopy. J. Appl. Phys. 99, 113505 (2006). es_ES
dc.description.references Von Hippel, A.R. in Dielectric Materials and Applications. 301–416 (Artech House, 1995) es_ES
dc.description.references Garcia-Baños, B., Catala-Civera, J. M., Penaranda-Foix, F. L., Plaza-Gonzalez, P. & Llorens-Valles, G. In situ monitoring of microwave processing of materials at high temperatures through dielectric properties measurement. Materials 9, 349 (2016). es_ES
dc.description.references Cuccurullo, G., Berardi, P. G., Carfagna, R. & Pierro, V. IR temperature measurements in microwave heating. Infrared Phys. Technol. 43, 145–150 (2002). es_ES
dc.description.references Catala-Civera, J. M. et al. Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity. IEEE Trans. Microw. Theory Tech. 63, 2905–2914 (2015). es_ES
dc.description.references Kappe, C. O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013). es_ES
dc.description.references Gangurde, L. S., Sturm, G. S. J., Devadiga, T. J., Stankiewicz, A. I. & Stefanidis, G. D. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind. Eng. Chem. Res. 56, 13379–13391 (2017). es_ES
dc.description.references Ramirez, A., Hueso, J. L., Mallada, R. & Santamaria, J. In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chem. Eng. J. 316, 50–60 (2017). es_ES
dc.description.references Sturm, G. S. J., Verweij, M. D., Van Gerven, T., Stankiewicz, A. I. & Stefanidis, G. D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Trans. 55, 3800–3811 (2012). es_ES
dc.description.references van Gool, W. Phase transition behaviour as a guide for selecting solid electrolyte materials In Phase Transitions–1973, Proceedings of the Conference on Phase Transitions and Their Applications in Materials Science (eds. Henisch, H. K., Roy, R. & Cross, L. E.) 373–377 (Pergamon Press, 1973). es_ES
dc.description.references Sabbah, R. et al. Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93–204 (1999). es_ES
dc.description.references Zhong, Z. & Gallagher, P. K. Temperature calibration of a simultaneous TG/DTA apparatus. Thermochim. Acta 186, 199–204 (1991). es_ES
dc.description.references Rao, S. R., Lingam, C. B., Rajesh, D., Vijayalakshmi, R. P. & Sunandana, C. S. Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4. IOSR. J. Appl. Phys. 4-2, 39–43 (2013). es_ES
dc.description.references Secco, R. A. & Secco, I. A. Structural and nonstructural factors in fast ion conduction in Ag2SO4 at high pressure. Phys. Rev. B 56(6), 3099–3104 (1997). es_ES
dc.description.references Eysel, W., Breuer, K.H. Differential Scanning Calorimetry: Simultaneous temperature and calorimetric calibration In Analytical Calorimetry vol. 5 (eds. Jhonson, J.F & Gill, P.S.) 67–80 (Plenum Press, 1984). es_ES
dc.description.references Graves, P. R., Hua, G., Myhra, S. & Thompson, J. G. The Raman modes of the Aurivillius phases: temperature and polarization dependence”. J. Sol. State Chem. 114, 112–122 (1995). es_ES
dc.description.references Moure, A. Review and perspectives of Aurivillius structures as a lead free Piezoelectric system. Appl. Sci. 8(1), 62 (2018). es_ES
dc.description.references Shulman, H. & Testorf, M. Damjanovic & Setter, D.N. Microstructure, electrical conductivity and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124–3128 (1996). [12]. es_ES
dc.description.references Miyake, M. & Iwai, S. Phase transition of potassium sulfate, K2SO 4 (III); thermodynamical and phenomenological study. Phys Chem Minerals 7, 211 215 (1981). es_ES
dc.description.references ASTM Standard C 965-81. Standard practice for measurement of viscosity of glass above the softening point in Annual book of ASTM standards, Vol. 15.02 (ASTM, 1990). es_ES
dc.description.references Ehrt, D. & Keding, R. Electrical conductivity and viscosity of borosilicate glasses and melts. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 50(3), 165–171 (2009). es_ES
dc.description.references Grandjean, A., Malki, M., Simonnet, C., Manara, D. & Penelon, B. Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts. Phys. Review B 75, 054112 (2007). es_ES
dc.description.references Limbach, R., Rodrigues, B. P. & Wondraczek, L. Strain-rate sensitivity of glasses. J. of Non-Crystalline Solids 404, 124–134 (2014). es_ES
dc.description.references García-Baños, B., Canós, A. J., Peñaranda-Foix, F. L. & Catalá-Civera, J. M. Non-invasive monitoring of polymer curing reactions by dielectrometry. IEEE Sensors Journal 11, 62–70 (2011). es_ES
dc.description.references Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A. & Núñez, M. R. Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer 45, 1167–1175 (2004). es_ES
dc.description.references Lefebvre, D. R. et al. Dielectric analysis for in situ monitoring of gelatin renaturation and crosslinking. J. Appl. Polymer Sci. 101, 2765–2775 (2006). es_ES
dc.description.references Olszak-Humienik, M. & Jablonski, M. Thermal behavior of natural dolomite. J Therm Anal Calorim 119, 2239–2248 (2015). es_ES
dc.description.references Harrington, R. F. Time–Harmonic Electromagnetic Fields (Wiley, 2001). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem