- -

Learning action models with minimal observability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Learning action models with minimal observability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aineto, Diego es_ES
dc.contributor.author Jiménez-Celorrio, Sergio es_ES
dc.contributor.author Onaindia De La Rivaherrera, Eva es_ES
dc.date.accessioned 2020-05-29T03:32:25Z
dc.date.available 2020-05-29T03:32:25Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0004-3702 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144560
dc.description.abstract [EN] This paper presents FAMA, a novel approach for learning STRIPS action models from observations of plan executions that compiles the learning task into a classical planning task. Unlike all existing learning systems, FAMA is able to learn when the actions of the plan executions are partially or totally unobservable and information on intermediate states is partially provided. This flexibility makes FAMA an ideal learning approach in domains where only sensoring data are accessible. Additionally, we leverage the compilation scheme and extend it to come up with an evaluation method that allows us to assess the quality of a learned model syntactically, that is, with respect to the actual model; and, semantically, that is, with respect to a set of observations of plan executions. We also show that the extended compilation scheme can be used to lay the foundations of a framework for action model comparison. FAMA is exhaustively evaluated over a wide range of IPC domains and its performance is compared to ARMS, a state-of-the-art benchmark in action model learning. (C) 2019 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. Diego Aineto is partially supported by the FPU16/03184 and Sergio Jimenez by the RYC15/18009, both programs funded by the Spanish government. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Action model learning es_ES
dc.subject Al planning es_ES
dc.subject Machine learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Learning action models with minimal observability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artint.2019.05.003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-18009/ES/RYC-2015-18009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Aineto, D.; Jiménez-Celorrio, S.; Onaindia De La Rivaherrera, E. (2019). Learning action models with minimal observability. Artificial Intelligence. 275:104-137. https://doi.org/10.1016/j.artint.2019.05.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artint.2019.05.003 es_ES
dc.description.upvformatpinicio 104 es_ES
dc.description.upvformatpfin 137 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 275 es_ES
dc.relation.pasarela S\388673 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem