- -

A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG

Mostrar el registro completo del ítem

Hernández-Montoto, A.; Gorbe, M.; Llopis-Lorente, A.; Terrés-Haro, JM.; Montes-Robles, R.; Cao Milán, R.; Díaz De Greñu-Puertas, B.... (2019). A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chemical Communications. 55(61):9039-9042. https://doi.org/10.1039/c9cc04260a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144570

Ficheros en el ítem

Metadatos del ítem

Título: A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG
Autor: Hernández-Montoto, Andy Gorbe, Mónica Llopis-Lorente, Antoni Terrés-Haro, José Manuel Montes-Robles, Roberto Cao Milán, Roberto Díaz de Greñu-Puertas, Borja Alfonso-Navarro, María Orzaez, Mar Marcos Martínez, María Dolores Martínez-Máñez, Ramón Sancenón Galarza, Félix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica
Fecha difusión:
Resumen:
[EN] Gold nanostars coated with a mesoporous silica shell and functionalized with poly(ethylene glycol) containing photolabile 2-nitrobenzyl moieties are able to release doxorubicin after NIR light irradiation at low power ...[+]
Palabras clave: Chemistry
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c9cc04260a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9cc04260a
Código del Proyecto:
info:eu-repo/grantAgreement/EACEA//2014-0870%2F001-001/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Agradecimientos:
The authors gratefully acknowledge financial support from the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/AEI/FEDER,UE)), the Generalitat Valenciana (Project PROMETEO2018/024) and the ...[+]
Tipo: Artículo

References

Koutsopoulos, S. (2012). Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1459-1476. doi:10.1016/j.addr.2012.08.002

Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 15(1), 253-282. doi:10.1146/annurev-bioeng-071812-152409

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 [+]
Koutsopoulos, S. (2012). Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1459-1476. doi:10.1016/j.addr.2012.08.002

Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 15(1), 253-282. doi:10.1146/annurev-bioeng-071812-152409

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Ariga, K., Ishihara, S., Labuta, J., & P. Hill, J. (2011). Supramolecular Approaches to Nanotechnology: Switching Properties and Dynamic Functions. Current Organic Chemistry, 15(21), 3719-3733. doi:10.2174/138527211797884629

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Jalani, G., Naccache, R., Rosenzweig, D. H., Haglund, L., Vetrone, F., & Cerruti, M. (2016). Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. Journal of the American Chemical Society, 138(3), 1078-1083. doi:10.1021/jacs.5b12357

Ibsen, S., Zahavy, E., Wrasdilo, W., Berns, M., Chan, M., & Esener, S. (2010). A Novel Doxorubicin Prodrug with Controllable Photolysis Activation for Cancer Chemotherapy. Pharmaceutical Research, 27(9), 1848-1860. doi:10.1007/s11095-010-0183-x

Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19(4), 316-317. doi:10.1038/86684

Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., & Almutairi, A. (2010). UV and Near-IR Triggered Release from Polymeric Nanoparticles. Journal of the American Chemical Society, 132(28), 9540-9542. doi:10.1021/ja102595j

Zhao, J., Gover, T. D., Muralidharan, S., Auston, D. A., Weinreich, D., & Kao, J. P. Y. (2006). Caged Vanilloid Ligands for Activation of TRPV1 Receptors by 1- and 2-Photon Excitation†. Biochemistry, 45(15), 4915-4926. doi:10.1021/bi052082f

Voliani, V., Ricci, F., Signore, G., Nifosì, R., Luin, S., & Beltram, F. (2011). Multiphoton Molecular Photorelease in Click-Chemistry-Functionalized Gold Nanoparticles. Small, 7(23), 3271-3275. doi:10.1002/smll.201101753

Voliani, V., Ricci, F., Luin, S., & Beltram, F. (2012). Peptidic coating for gold nanospheres multifunctionalizable with photostable and photolabile moieties. Journal of Materials Chemistry, 22(29), 14487. doi:10.1039/c2jm31782f

Trigari, S., Rindi, A., Margheri, G., Sottini, S., Dellepiane, G., & Giorgetti, E. (2011). Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum. Journal of Materials Chemistry, 21(18), 6531. doi:10.1039/c0jm04519e

Zhang, Z., Zhang, D., Wei, L., Wang, X., Xu, Y., Li, H.-W., … Xiao, L. (2017). Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for cellular imaging and controlled releasing of drug to living cells. Colloids and Surfaces B: Biointerfaces, 159, 905-912. doi:10.1016/j.colsurfb.2017.08.060

Wei, L., Zhang, D., Zheng, X., Zeng, X., Zeng, Y., Shi, X., … Xiao, L. (2018). Fabrication of Positively Charged Fluorescent Polymer Nanoparticles for Cell Imaging and Gene Delivery. Nanotheranostics, 2(2), 157-167. doi:10.7150/ntno.22988

Wang, F., Li, Y., Han, Y., Ye, Z., Wei, L., Luo, H.-B., & Xiao, L. (2019). Single-Particle Enzyme Activity Assay with Spectral-Resolved Dark-Field Optical Microscopy. Analytical Chemistry, 91(9), 6329-6339. doi:10.1021/acs.analchem.9b01300

Zhang, D., Wei, L., Zhong, M., Xiao, L., Li, H.-W., & Wang, J. (2018). The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chemical Science, 9(23), 5260-5269. doi:10.1039/c8sc01828f

Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous Silica Nanoparticles Capped with Disulfide-Linked PEG Gatekeepers for Glutathione-Mediated Controlled Release. ACS Applied Materials & Interfaces, 4(6), 3177-3183. doi:10.1021/am3005225

Llopis-Lorente, A., de Luis, B., García-Fernández, A., Díez, P., Sánchez, A., Dolores Marcos, M., … Sancenón, F. (2017). Au–Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. Journal of Materials Chemistry B, 5(33), 6734-6739. doi:10.1039/c7tb02045g

Holmes, C. P. (1997). Model Studies for Newo-Nitrobenzyl Photolabile Linkers:  Substituent Effects on the Rates of Photochemical Cleavage. The Journal of Organic Chemistry, 62(8), 2370-2380. doi:10.1021/jo961602x

Pastoriza-Santos, I., & Liz-Marzán, L. M. (2009). N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials, 19(5), 679-688. doi:10.1002/adfm.200801566

Luo, G.-F., Chen, W.-H., Lei, Q., Qiu, W.-X., Liu, Y.-X., Cheng, Y.-J., & Zhang, X.-Z. (2016). A Triple-Collaborative Strategy for High-Performance Tumor Therapy by Multifunctional Mesoporous Silica-Coated Gold Nanorods. Advanced Functional Materials, 26(24), 4339-4350. doi:10.1002/adfm.201505175

Teng, Z., Zheng, G., Dou, Y., Li, W., Mou, C.-Y., Zhang, X., … Zhao, D. (2012). Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stöber-Solution Growth Approach. Angewandte Chemie International Edition, 51(9), 2173-2177. doi:10.1002/anie.201108748

Hernández Montoto, A., Montes, R., Samadi, A., Gorbe, M., Terrés, J. M., Cao-Milán, R., … Martínez-Máñez, R. (2018). Gold Nanostars Coated with Mesoporous Silica Are Effective and Nontoxic Photothermal Agents Capable of Gate Keeping and Laser-Induced Drug Release. ACS Applied Materials & Interfaces, 10(33), 27644-27656. doi:10.1021/acsami.8b08395

Nooney, R. I., Thirunavukkarasu, D., Chen, Y., Josephs, R., & Ostafin, A. E. (2003). Self-Assembly of Mesoporous Nanoscale Silica/Gold Composites. Langmuir, 19(18), 7628-7637. doi:10.1021/la034522e

Nooney, R. I., Thirunavukkarasu, D., Chen, Y., Josephs, R., & Ostafin, A. E. (2002). Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size. Chemistry of Materials, 14(11), 4721-4728. doi:10.1021/cm0204371

Liu, W., Zhu, Z., Deng, K., Li, Z., Zhou, Y., Qiu, H., … Tang, Z. (2013). Gold Nanorod@Chiral Mesoporous Silica Core–shell Nanoparticles with Unique Optical Properties. Journal of the American Chemical Society, 135(26), 9659-9664. doi:10.1021/ja312327m

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Li, N., Yu, Z., Pan, W., Han, Y., Zhang, T., & Tang, B. (2012). A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release. Advanced Functional Materials, 23(18), 2255-2262. doi:10.1002/adfm.201202564

Montes-Robles, R., Hernández, A., Ibáñez, J., Masot-Peris, R., de la Torre, C., Martínez-Máñez, R., … Fraile, R. (2017). Design of a low-cost equipment for optical hyperthermia. Sensors and Actuators A: Physical, 255, 61-70. doi:10.1016/j.sna.2016.12.018

Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986

Hernández Montoto, A., Llopis‐Lorente, A., Gorbe, M., M. Terrés, J., Cao‐Milán, R., Díaz de Greñu, B., … Sancenón, F. (2019). Janus Gold Nanostars–Mesoporous Silica Nanoparticles for NIR‐Light‐Triggered Drug Delivery. Chemistry – A European Journal, 25(36), 8471-8478. doi:10.1002/chem.201900750

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem