- -

Designing river water quality policy interventions with scarce data: the case of the Middle Tagus Basin, Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing river water quality policy interventions with scarce data: the case of the Middle Tagus Basin, Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bolinches, Antonio es_ES
dc.contributor.author De Stefano, Lucia es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.date.accessioned 2020-05-29T03:32:58Z
dc.date.available 2020-05-29T03:32:58Z
dc.date.issued 2020-02-07 es_ES
dc.identifier.issn 0262-6667 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144571
dc.description.abstract [EN] Anthropic pressures deteriorate river water quality, so authorities need to identify their causes and define corrective actions. Physically based water quality models are a useful tool for addressing physicochemical pollutants, but they must be calibrated with an amount of data that is often unavailable. In this study, we explore the characterization of a model to design corrective interventions in a context of sparse data. A calibration indicator that is both simple and flexible is proposed. This approach is applied to the Middle Tagus Basin in central Spain, where the physicochemical concentration of pollutants is above legal standards. We quantify the effects of the main existing pressures (discharge from wastewater treatment plants, agricultural diffuse pollution and a major inter-basin water transfer) on the receiving waters. In particular, the study finds that wastewater treatment plant effluent concentrations should be reduced to up to 0.65 mg/L of ammonium and 0.55 mg/L of phosphate to achieve the environmental goals. We propose and prioritize a set of policy actions that would contribute to the good status of surface water bodies in the region. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Hydrological Sciences Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water Framework Directive es_ES
dc.subject Water quality es_ES
dc.subject Tagus Basin es_ES
dc.subject Data scarcity es_ES
dc.subject Modelling es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Designing river water quality policy interventions with scarce data: the case of the Middle Tagus Basin, Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02626667.2019.1708915 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Bolinches, A.; De Stefano, L.; Paredes Arquiola, J. (2020). Designing river water quality policy interventions with scarce data: the case of the Middle Tagus Basin, Spain. Hydrological Sciences Journal. 65(5):749-762. https://doi.org/10.1080/02626667.2019.1708915 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02626667.2019.1708915 es_ES
dc.description.upvformatpinicio 749 es_ES
dc.description.upvformatpfin 762 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\402378 es_ES
dc.description.references Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027 es_ES
dc.description.references Cohn, T. A., Delong, L. L., Gilroy, E. J., Hirsch, R. M., & Wells, D. K. (1989). Estimating constituent loads. Water Resources Research, 25(5), 937-942. doi:10.1029/wr025i005p00937 es_ES
dc.description.references Cubillo, F., Rodriguez, B., & Barnwell, T. O. (1992). A System for Control of River Water Quality for the Community of Madrid Using QUAL2E. Water Science and Technology, 26(7-8), 1867-1873. doi:10.2166/wst.1992.0631 es_ES
dc.description.references A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models. (2015). Transactions of the ASABE, 58(6), 1705-1719. doi:10.13031/trans.58.10712 es_ES
dc.description.references De Oliveira, L. M., Maillard, P., & de Andrade Pinto, É. J. (2016). Modeling the effect of land use/land cover on nitrogen, phosphorous and dissolved oxygen loads in the Velhas River using the concept of exclusive contribution area. Environmental Monitoring and Assessment, 188(6). doi:10.1007/s10661-016-5323-2 es_ES
dc.description.references Di Baldassarre, G., Kooy, M., Kemerink, J. S., & Brandimarte, L. (2013). Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrology and Earth System Sciences, 17(8), 3235-3244. doi:10.5194/hess-17-3235-2013 es_ES
dc.description.references Inland Waters. (s. f.). doi:10.5268/iw es_ES
dc.description.references Elrashidi, M. A., Mays, M. D., Peaslee, S. D., & Hooper, D. G. (2005). A Technique to Estimate Nitrate–Nitrogen Loss by Runoff and Leaching for Agricultural Land, Lancaster County, Nebraska. Communications in Soil Science and Plant Analysis, 35(17-18), 2593-2615. doi:10.1081/lcss-200030396 es_ES
dc.description.references Elshemy, M., Khadr, M., Atta, Y., & Ahmed, A. (2016). Hydrodynamic and water quality modeling of Lake Manzala (Egypt) under data scarcity. Environmental Earth Sciences, 75(19). doi:10.1007/s12665-016-6136-x es_ES
dc.description.references Epelde, A. M., Cerro, I., Sánchez-Pérez, J. M., Sauvage, S., Srinivasan, R., & Antigüedad, I. (2015). Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrological Sciences Journal, 1-19. doi:10.1080/02626667.2014.967692 es_ES
dc.description.references Fonseca, A., Botelho, C., Boaventura, R. A. R., & Vilar, V. J. P. (2014). Integrated hydrological and water quality model for river management: A case study on Lena River. Science of The Total Environment, 485-486, 474-489. doi:10.1016/j.scitotenv.2014.03.111 es_ES
dc.description.references Genkai-Kato, M., & Carpenter, S. R. (2005). EUTROPHICATION DUE TO PHOSPHORUS RECYCLING IN RELATION TO LAKE MORPHOMETRY, TEMPERATURE, AND MACROPHYTES. Ecology, 86(1), 210-219. doi:10.1890/03-0545 es_ES
dc.description.references Grizzetti, B., Bouraoui, F., & De Marsily, G. (2008). Assessing nitrogen pressures on European surface water. Global Biogeochemical Cycles, 22(4), n/a-n/a. doi:10.1029/2007gb003085 es_ES
dc.description.references Hutchins, M. G., & Bowes, M. J. (2018). Balancing Water Demand Needs with Protection of River Water Quality by Minimising Stream Residence Time: an Example from the Thames, UK. Water Resources Management, 32(7), 2561-2568. doi:10.1007/s11269-018-1946-0 es_ES
dc.description.references Keupers, I., & Willems, P. (2017). Development and testing of a fast conceptual river water quality model. Water Research, 113, 62-71. doi:10.1016/j.watres.2017.01.054 es_ES
dc.description.references Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. doi:10.1127/0941-2948/2006/0130 es_ES
dc.description.references Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018 es_ES
dc.description.references Macklin, M. G., & Lewin, J. (2015). The rivers of civilization. Quaternary Science Reviews, 114, 228-244. doi:10.1016/j.quascirev.2015.02.004 es_ES
dc.description.references Momblanch, A., Paredes-Arquiola, J., Munné, A., Manzano, A., Arnau, J., & Andreu, J. (2015). Managing water quality under drought conditions in the Llobregat River Basin. Science of The Total Environment, 503-504, 300-318. doi:10.1016/j.scitotenv.2014.06.069 es_ES
dc.description.references D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153 es_ES
dc.description.references Hydrologic and Water Quality Models: Key Calibration and Validation Topics. (2015). Transactions of the ASABE, 58(6), 1609-1618. doi:10.13031/trans.58.11075 es_ES
dc.description.references Munafò, M., Cecchi, G., Baiocco, F., & Mancini, L. (2005). River pollution from non-point sources: a new simplified method of assessment. Journal of Environmental Management, 77(2), 93-98. doi:10.1016/j.jenvman.2005.02.016 es_ES
dc.description.references Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6 es_ES
dc.description.references Paredes, J., Andreu, J., & Solera, A. (2010). A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Science of The Total Environment, 408(12), 2576-2589. doi:10.1016/j.scitotenv.2010.02.037 es_ES
dc.description.references Pellicer-Martínez, F., & Martínez-Paz, J. M. (2018). Climate change effects on the hydrology of the headwaters of the Tagus River: implications for the management of the Tagus–Segura transfer. Hydrology and Earth System Sciences, 22(12), 6473-6491. doi:10.5194/hess-22-6473-2018 es_ES
dc.description.references Pieterse, N. ., Bleuten, W., & Jørgensen, S. . (2003). Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. Journal of Hydrology, 271(1-4), 213-225. doi:10.1016/s0022-1694(02)00350-5 es_ES
dc.description.references Shrestha, N. K., Leta, O. T., & Bauwens, W. (2016). Development of RWQM1-based integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrological Sciences Journal, 62(5), 774-799. doi:10.1080/02626667.2016.1261143 es_ES
dc.description.references Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C., & Lindström, G. (2012). Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale. Hydrological Sciences Journal, 57(2), 229-247. doi:10.1080/02626667.2011.637497 es_ES
dc.description.references Tarawneh, E., Bridge, J., & Macdonald, N. (2016). A pre-calibration approach to select optimum inputs for hydrological models in data-scarce regions. Hydrology and Earth System Sciences, 20(10), 4391-4407. doi:10.5194/hess-20-4391-2016 es_ES
dc.description.references Thirel, G., Andréassian, V., & Perrin, C. (2015). On the need to test hydrological models under changing conditions. Hydrological Sciences Journal, 60(7-8), 1165-1173. doi:10.1080/02626667.2015.1050027 es_ES
dc.description.references Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581-3592. doi:10.1016/s0043-1354(98)00138-9 es_ES
dc.description.references Wang, C. G., & Jamieson, D. G. (2002). An objective approach to regional wastewater treatment planning. Water Resources Research, 38(3), 4-1-4-8. doi:10.1029/2000wr000062 es_ES
dc.description.references (2014). Hydrological Processes, 28(3). doi:10.1002/hyp.v28.3 es_ES
dc.description.references Xue, C., Yin, H., & Xie, M. (2015). Development of integrated catchment and water quality model for urban rivers. Journal of Hydrodynamics, 27(4), 593-603. doi:10.1016/s1001-6058(15)60521-2 es_ES
dc.description.references Yang, Y. S., & Wang, L. (2009). A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution. Water Resources Management, 24(9), 1819-1843. doi:10.1007/s11269-009-9526-y es_ES
dc.description.references Zeferino, J. A., Cunha, M. C., & Antunes, A. P. (2017). Adapted optimization model for planning regional wastewater systems: case study. Water Science and Technology, 76(5), 1196-1205. doi:10.2166/wst.2017.302 es_ES
dc.description.references Zhang, H., & Huang, G. H. (2011). Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecological Modelling, 222(2), 313-321. doi:10.1016/j.ecolmodel.2009.12.011 es_ES
dc.description.references Zhao, G. J., Hörmann, G., Fohrer, N., Li, H. P., Gao, J. F., & Tian, K. (2011). Development and application of a nitrogen simulation model in a data scarce catchment in South China. Agricultural Water Management, 98(4), 619-631. doi:10.1016/j.agwat.2010.10.022 es_ES
dc.description.references Zou, R., Zhang, X., Liu, Y., Chen, X., Zhao, L., Zhu, X., … Guo, H. (2014). Uncertainty-based analysis on water quality response to water diversions for Lake Chenghai: A multiple-pattern inverse modeling approach. Journal of Hydrology, 514, 1-14. doi:10.1016/j.jhydrol.2014.03.069 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem