dc.contributor.author |
Calatayud-Gregori, Julia
|
es_ES |
dc.contributor.author |
Cortés, J.-C.
|
es_ES |
dc.contributor.author |
Jornet-Sanz, Marc
|
es_ES |
dc.date.accessioned |
2020-05-29T03:33:06Z |
|
dc.date.available |
2020-05-29T03:33:06Z |
|
dc.date.issued |
2019-07 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/144575 |
|
dc.description |
"This is the peer reviewed version of the following article: Calatayud, J, Cortés, J-;C, Jornet, M. On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Comp and Math Methods. 2019; 1:e1045. https://doi.org/10.1002/cmm4.1045 , which has been published in final form at https://doi.org/10.1002/cmm4.1045. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." |
es_ES |
dc.description.abstract |
[EN] In this paper, we construct two linearly independent response processes to the random Legendre differential equation on (-1,1)U(1,3), consisting of Lp(omega) convergent random power series around the regular¿singular point 1. A theorem on the existence and uniqueness of Lp(omega) solution to the random Legendre differential equation on the intervals (-1,1) and (1,3) is obtained. The hypotheses assumed are simple: initial conditions in Lp(omega) and random input A in L infinite(omega) (this is equivalent to A having absolute moments that grow at most exponentially). Thus, this paper extends the deterministic theory to a random framework. Uncertainty quantification for the solution stochastic process is performed by truncating the random series and taking limits in Lp(omega). In the numerical experiments, we approximate its expectation and variance for certain forms of the differential equation. The reliability of our approach is compared with Monte Carlo simulations and generalized polynomial chaos expansions. |
es_ES |
dc.description.sponsorship |
Spanish Ministerio de Economía y Competitividad, Grant/Award Number: MTM2017-89664-P; Programa de Ayudas de Investigación y Desarrollo; Universitat Politècnica de València |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
Computational and Mathematical Methods |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Lp random calculus |
es_ES |
dc.subject |
Random Legendre differential equation |
es_ES |
dc.subject |
Random power series |
es_ES |
dc.subject |
Regular-singular point |
es_ES |
dc.subject |
Uncertainty quantification |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/cmm4.1045 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Computational and Mathematical Methods. 1(4):1-12. https://doi.org/10.1002/cmm4.1045 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/cmm4.1045 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
12 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
1 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.identifier.eissn |
2577-7408 |
es_ES |
dc.relation.pasarela |
S\387624 |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.description.references |
Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045 |
es_ES |
dc.description.references |
Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 |
es_ES |
dc.description.references |
Wong, E., & Hajek, B. (1985). Stochastic Processes in Engineering Systems. Springer Texts in Electrical Engineering. doi:10.1007/978-1-4612-5060-9 |
es_ES |
dc.description.references |
Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8 |
es_ES |
dc.description.references |
Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813 |
es_ES |
dc.description.references |
Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033 |
es_ES |
dc.description.references |
Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 |
es_ES |
dc.description.references |
Lang, S. (1997). Undergraduate Analysis. Undergraduate Texts in Mathematics. doi:10.1007/978-1-4757-2698-5 |
es_ES |
dc.description.references |
Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2013). Solving Continuous Models with Dependent Uncertainty: A Computational Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/983839 |
es_ES |
dc.description.references |
Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315 |
es_ES |