- -

Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-06-02T05:36:38Z
dc.date.available 2020-06-02T05:36:38Z
dc.date.issued 2019-11-19 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144799
dc.description.abstract [EN] In this paper, we address the problem of approximating the probability density function of the following random logistic differential equation: P-'(t,omega)=A(t,omega)(1-P(t,omega))P(t,omega), t is an element of[t(0),T], P(t(0),omega)=P-0(omega), where omega is any outcome in the sample space omega. In the recent contribution [Cortes, JC, et al. Commun Nonlinear Sci Numer Simulat 2019; 72: 121-138], the authors imposed conditions on the diffusion coefficient A(t) and on the initial condition P-0 to approximate the density function f(1)(p,t) of P(t): A(t) is expressed as a Karhunen-Loeve expansion with absolutely continuous random coefficients that have certain growth and are independent of the absolutely continuous random variable P-0, and the density of P-0, fP0, is Lipschitz on (0,1). In this article, we tackle the problem in a different manner, by using probability tools that allow the hypotheses to be less restrictive. We only suppose that A(t) is expanded on L-2([t(0),T]x omega), so that we include other expansions such as random power series. We only require absolute continuity for P-0, so that A(t) may be discrete or singular, due to a modified version of the random variable transformation technique. For fP0, only almost everywhere continuity and boundedness on (0,1) are needed. We construct an approximating sequence {f1N(p,t)}N=1 infinity of density functions in terms of expectations that tends to f(1)(p,t) pointwise. Numerical examples illustrate our theoretical results. es_ES
dc.description.sponsorship Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MTM2017-89664-P; Universitat Politecnica de Valencia, Grant/Award Number: Programa de Ayudas de Investigacion y Desarrollo es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mean square expansion es_ES
dc.subject Probability density function es_ES
dc.subject Random logistic differential equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5834 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations. Mathematical Methods in the Applied Sciences. 42(18):7259-7267. https://doi.org/10.1002/mma.5834 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5834 es_ES
dc.description.upvformatpinicio 7259 es_ES
dc.description.upvformatpfin 7267 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 18 es_ES
dc.relation.pasarela S\390613 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2019). Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 72, 121-138. doi:10.1016/j.cnsns.2018.12.013 es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Bharucha-Reid, A. T. (1964). On the theory of random equations. Proceedings of Symposia in Applied Mathematics, 40-69. doi:10.1090/psapm/016/0189071 es_ES
dc.description.references Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267 es_ES
dc.description.references Murray, J. D. (Ed.). (2002). Mathematical Biology. Interdisciplinary Applied Mathematics. doi:10.1007/b98868 es_ES
dc.description.references Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Dorini, F. A., Bobko, N., & Dorini, L. B. (2016). A note on the logistic equation subject to uncertainties in parameters. Computational and Applied Mathematics, 37(2), 1496-1506. doi:10.1007/s40314-016-0409-6 es_ES
dc.description.references Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty. Journal of Computational and Applied Mathematics, 337, 190-208. doi:10.1016/j.cam.2018.01.015 es_ES
dc.description.references Burgos, C., Calatayud, J., Cortés, J.-C., & Navarro-Quiles, A. (2018). A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Mathematical Methods in the Applied Sciences, 41(18), 9037-9047. doi:10.1002/mma.4881 es_ES
dc.description.references Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329 es_ES
dc.description.references CalatayudJ CortésJC JornetM. On the approximation of the probability density function of the randomized non‐autonomous complete linear differential equation. arXiv preprint arXiv:1802.04188;2018. es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 es_ES
dc.description.references Vaart, A. W. van der. (1998). Asymptotic Statistics. doi:10.1017/cbo9780511802256 es_ES
dc.description.references Wolfram Research Inc. Mathematica. Version 11.2 Champaign Illinois;2017. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem