Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet-Sanz, Marc | es_ES |
dc.date.accessioned | 2020-06-02T05:36:38Z | |
dc.date.available | 2020-06-02T05:36:38Z | |
dc.date.issued | 2019-11-19 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144799 | |
dc.description.abstract | [EN] In this paper, we address the problem of approximating the probability density function of the following random logistic differential equation: P-'(t,omega)=A(t,omega)(1-P(t,omega))P(t,omega), t is an element of[t(0),T], P(t(0),omega)=P-0(omega), where omega is any outcome in the sample space omega. In the recent contribution [Cortes, JC, et al. Commun Nonlinear Sci Numer Simulat 2019; 72: 121-138], the authors imposed conditions on the diffusion coefficient A(t) and on the initial condition P-0 to approximate the density function f(1)(p,t) of P(t): A(t) is expressed as a Karhunen-Loeve expansion with absolutely continuous random coefficients that have certain growth and are independent of the absolutely continuous random variable P-0, and the density of P-0, fP0, is Lipschitz on (0,1). In this article, we tackle the problem in a different manner, by using probability tools that allow the hypotheses to be less restrictive. We only suppose that A(t) is expanded on L-2([t(0),T]x omega), so that we include other expansions such as random power series. We only require absolute continuity for P-0, so that A(t) may be discrete or singular, due to a modified version of the random variable transformation technique. For fP0, only almost everywhere continuity and boundedness on (0,1) are needed. We construct an approximating sequence {f1N(p,t)}N=1 infinity of density functions in terms of expectations that tends to f(1)(p,t) pointwise. Numerical examples illustrate our theoretical results. | es_ES |
dc.description.sponsorship | Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MTM2017-89664-P; Universitat Politecnica de Valencia, Grant/Award Number: Programa de Ayudas de Investigacion y Desarrollo | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mean square expansion | es_ES |
dc.subject | Probability density function | es_ES |
dc.subject | Random logistic differential equation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5834 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations. Mathematical Methods in the Applied Sciences. 42(18):7259-7267. https://doi.org/10.1002/mma.5834 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5834 | es_ES |
dc.description.upvformatpinicio | 7259 | es_ES |
dc.description.upvformatpfin | 7267 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.pasarela | S\390613 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2019). Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 72, 121-138. doi:10.1016/j.cnsns.2018.12.013 | es_ES |
dc.description.references | Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 | es_ES |
dc.description.references | Bharucha-Reid, A. T. (1964). On the theory of random equations. Proceedings of Symposia in Applied Mathematics, 40-69. doi:10.1090/psapm/016/0189071 | es_ES |
dc.description.references | Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267 | es_ES |
dc.description.references | Murray, J. D. (Ed.). (2002). Mathematical Biology. Interdisciplinary Applied Mathematics. doi:10.1007/b98868 | es_ES |
dc.description.references | Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 | es_ES |
dc.description.references | Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 | es_ES |
dc.description.references | Dorini, F. A., Bobko, N., & Dorini, L. B. (2016). A note on the logistic equation subject to uncertainties in parameters. Computational and Applied Mathematics, 37(2), 1496-1506. doi:10.1007/s40314-016-0409-6 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty. Journal of Computational and Applied Mathematics, 337, 190-208. doi:10.1016/j.cam.2018.01.015 | es_ES |
dc.description.references | Burgos, C., Calatayud, J., Cortés, J.-C., & Navarro-Quiles, A. (2018). A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Mathematical Methods in the Applied Sciences, 41(18), 9037-9047. doi:10.1002/mma.4881 | es_ES |
dc.description.references | Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329 | es_ES |
dc.description.references | CalatayudJ CortésJC JornetM. On the approximation of the probability density function of the randomized non‐autonomous complete linear differential equation. arXiv preprint arXiv:1802.04188;2018. | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 | es_ES |
dc.description.references | Vaart, A. W. van der. (1998). Asymptotic Statistics. doi:10.1017/cbo9780511802256 | es_ES |
dc.description.references | Wolfram Research Inc. Mathematica. Version 11.2 Champaign Illinois;2017. | es_ES |