- -

An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dai, Min es_ES
dc.contributor.author Zhang, Ziwei es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Salido, Miguel A. es_ES
dc.date.accessioned 2020-06-03T05:53:11Z
dc.date.available 2020-06-03T05:53:11Z
dc.date.issued 2019-05-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145113
dc.description.abstract [EN] Nowadays, the manufacturing industry faces the challenge of reducing energy consumption and the associated environmental impacts. Production scheduling is an effective approach for energy-savings management. During the entire workshop production process, both the processing and transportation operations consume large amounts of energy. To reduce energy consumption, an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed in this paper. First, a mixed-integer programming model was established to minimize both the comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm, an estimation of distribution algorithm was employed to perform the global search and an improved simulated annealing algorithm was designed to perform the local search. Finally, numerical experiments were implemented to analyze the performance of the EEDA. The results showed that the EEDA is a promising approach and that it can solve EJSP effectively and efficiently. es_ES
dc.description.sponsorship This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB460018), the Innovation Foundation for Science and Technology of Yangzhou University (No. 2016CXJ020 and No. 2017CXJ018), Science and Technology Project of Yangzhou under (No. YZ2017278), Research Topics of Teaching Reform of Yangzhou University under (No. YZUJX2018-28B), and the Spanish Government (No. TIN2016-80856-R and No. TIN2015-65515-C4-1-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Job-shop scheduling es_ES
dc.subject Energy consumption es_ES
dc.subject Estimation of distribution algorithm es_ES
dc.subject Transportation time es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11113085 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Research of Jiangsu Higher Education Institutions of China//17KJB460018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//2016CXJ020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//2017CXJ018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Yangzhou Science and Technology Bureau//YZ2017278/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//YZUJX2018-28B/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-80856-R/ES/TECNOLOGIAS INTELIGENTES PARA LA RESOLUCION CENTRALIZADA Y DISTRIBUIDA DE PROBLEMAS DE SCHEDULING SOSTENIBLE EN PROCESOS INDUSTRIALES Y LOGISTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Dai, M.; Zhang, Z.; Giret Boggino, AS.; Salido, MA. (2019). An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints. Sustainability. 11(11):1-23. https://doi.org/10.3390/su11113085 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11113085 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\389608 es_ES
dc.contributor.funder Yangzhou University es_ES
dc.contributor.funder Yangzhou Science and Technology Bureau es_ES
dc.contributor.funder Natural Science Research of Jiangsu Higher Education Institutions of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 172, 3249-3264. doi:10.1016/j.jclepro.2017.10.342 es_ES
dc.description.references Wang, Q., Tang, D., Li, S., Yang, J., Salido, M., Giret, A., & Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability, 11(2), 460. doi:10.3390/su11020460 es_ES
dc.description.references Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. doi:10.3390/su10124779 es_ES
dc.description.references Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017 es_ES
dc.description.references Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002 es_ES
dc.description.references Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100 es_ES
dc.description.references Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004 es_ES
dc.description.references Lee, S., Do Chung, B., Jeon, H. W., & Chang, J. (2017). A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. Journal of Cleaner Production, 165, 552-563. doi:10.1016/j.jclepro.2017.07.102 es_ES
dc.description.references Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. doi:10.1016/j.cie.2018.12.020 es_ES
dc.description.references Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. doi:10.1016/j.procir.2019.01.062 es_ES
dc.description.references Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598. doi:10.1016/j.jclepro.2018.02.004 es_ES
dc.description.references Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011 es_ES
dc.description.references Fu, Y., Tian, G., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515-525. doi:10.1016/j.jclepro.2019.04.046 es_ES
dc.description.references Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434. doi:10.1016/j.jclepro.2019.03.155 es_ES
dc.description.references Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060 es_ES
dc.description.references Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019 es_ES
dc.description.references May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248 es_ES
dc.description.references Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097 es_ES
dc.description.references Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0 es_ES
dc.description.references Masmoudi, O., Delorme, X., & Gianessi, P. (2019). Job-shop scheduling problem with energy consideration. International Journal of Production Economics, 216, 12-22. doi:10.1016/j.ijpe.2019.03.021 es_ES
dc.description.references Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004 es_ES
dc.description.references Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, 210, 710-723. doi:10.1016/j.jclepro.2018.11.021 es_ES
dc.description.references Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157. doi:10.1016/j.rcim.2019.04.006 es_ES
dc.description.references Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24-34. doi:10.1016/j.ijpe.2010.07.012 es_ES
dc.description.references Nageswararao, M., Narayanarao, K., & Ranagajanardhana, G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion. Procedia Materials Science, 5, 1492-1501. doi:10.1016/j.mspro.2014.07.336 es_ES
dc.description.references Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13. doi:10.1016/j.cie.2015.01.003 es_ES
dc.description.references Guo, Z., Zhang, D., Leung, S. Y. S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Applied Soft Computing, 42, 215-228. doi:10.1016/j.asoc.2016.01.052 es_ES
dc.description.references Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022 es_ES
dc.description.references Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786. doi:10.1016/j.jclepro.2018.11.231 es_ES
dc.description.references Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 28(5), 1048-1055. doi:10.3901/cjme.2015.0617.082 es_ES
dc.description.references Hao, X., Lin, L., Gen, M., & Ohno, K. (2013). Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 20, 102-107. doi:10.1016/j.procs.2013.09.246 es_ES
dc.description.references Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers & Industrial Engineering, 62(4), 917-926. doi:10.1016/j.cie.2011.12.014 es_ES
dc.description.references Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 36(9), 2638-2646. doi:10.1016/j.cor.2008.11.004 es_ES
dc.description.references Hauschild, M., & Pelikan, M. (2011). An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), 111-128. doi:10.1016/j.swevo.2011.08.003 es_ES
dc.description.references Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058 es_ES
dc.description.references Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001 es_ES
dc.description.references Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166 es_ES
dc.description.references Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2015). A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems. International Journal of Production Research, 54(4), 1039-1060. doi:10.1080/00207543.2015.1041575 es_ES
dc.description.references Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 113-125. doi:10.1287/opre.40.1.113 es_ES
dc.description.references Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28(6), 585-596. doi:10.1016/s0305-0548(99)00137-9 es_ES
dc.description.references Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40. doi:10.1016/0305-0548(93)e0016-m es_ES
dc.description.references Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems. Computers & Industrial Engineering, 45(4), 597-613. doi:10.1016/s0360-8352(03)00077-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem