- -

Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández-Villanueva, Estefanía es_ES
dc.contributor.author Moreno González, Marta es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Blasco Lanzuela, Teresa es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-06-04T06:30:26Z
dc.date.available 2020-06-04T06:30:26Z
dc.date.issued 2018-06 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145195
dc.description.abstract [EN] We present a combined theoretical-experimental study aiming to provide information about the location and coordination environment of the Cu2+ species involved in the selective reduction of NOx with NH3 catalyzed by Cu-zeolites. From the experimental side, we show and discuss the EPR spectra of the three molecular sieves most widely used as catalysts for the NH3-SCR-NOx reaction, namely Cu-SSZ-13, Cu-SAPO-34 and Cu-ZSM-5 both in their hydrated state and after dehydration. Then, we investigate the EPR spectra of Cu-SSZ-13 and Cu-SAPO-34 under the following conditions: (i) after NH3 adsorption, (ii) after NO addition, and (iii) in the presence of a NO/O-2 mixture. As regards the theoretical part, an exhaustive computational study has been performed that includes geometry optimization and calculation of the EPR parameters of all the relevant systems involved in the NH3-SCR-NOx reaction. The influence of local geometry and Al/Si distribution in the zeolite framework on the EPR parameters and the most probable location of Cu2+ in each material are analyzed, and assignations of the EPR signals obtained under different reaction conditions are discussed. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government through Severo Ochoa Program (SEV 2012-0267), MAT2015-71261-R and CTQ2015-68951-C3-1-R, and by the European Union through ERC-AdG-2014-671093 (SynCatMatch). Red Española de Supercomputación (RES) and Centre de Càlcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. E.F.V. thanks MINECO for her fellowship SVP-2013-068146. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cu-zeolites es_ES
dc.subject Theoretical modelling es_ES
dc.subject EPR es_ES
dc.subject NH3-SCR-NO(x)reaction es_ES
dc.subject DFT es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-018-0929-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2013-068146/ES/SVP-2013-068146/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Fernández-Villanueva, E.; Moreno González, M.; Moliner Marin, M.; Blasco Lanzuela, T.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites. Topics in Catalysis. 61(9-11):810-832. https://doi.org/10.1007/s11244-018-0929-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11244-018-0929-y es_ES
dc.description.upvformatpinicio 810 es_ES
dc.description.upvformatpfin 832 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 9-11 es_ES
dc.relation.pasarela S\383405 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Research Council es_ES
dc.description.references Chen H-Y (2014) In: Nova I, Tronconi E (eds) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New York es_ES
dc.description.references Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531 es_ES
dc.description.references Gao F, Kwak J, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459 es_ES
dc.description.references Deka U, Lezcano-González I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427 es_ES
dc.description.references Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405 es_ES
dc.description.references Zhang R, Liu N, Lei Z, Chen B (2016) Chem Rev 116:3658–3721 es_ES
dc.description.references Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190 es_ES
dc.description.references Bates SA, Verma A, Paolucci C, Parekh A, Anggara T, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97 es_ES
dc.description.references Beale AM, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173 es_ES
dc.description.references Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64 es_ES
dc.description.references Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903 es_ES
dc.description.references Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF (2017) JACS 139:4935–4942 es_ES
dc.description.references Dedecek J, Kaucky D, Wichterlova B (2000) Microporous Mesoporous Mater 35–36:483–494 es_ES
dc.description.references Mentzen BF, Bergeret G (2007) J Phys Chem C 111:12512–12516 es_ES
dc.description.references Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29 es_ES
dc.description.references Godiksen A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138 es_ES
dc.description.references Godiksen A, Vennestrom PNR, Rasmussen S, Mossin S (2017) Top Catal 60:13–29 es_ES
dc.description.references Ames WM, Larsen SC (2010) J Phys Chem A 114:589–594 es_ES
dc.description.references Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Phys Chem Chem Phys 5:2135–2144 es_ES
dc.description.references Delabie A, Pierloot K, Groothaert MH, Weckhuysen BM, Shoonheydt RA (2002) Phys Chem Chem Phys 4:134–145 es_ES
dc.description.references Pierloot K, Delabie A, Groothaert MH, Shoonheydt RA (2001) Phys Chem Chem Phys 3:2174–2183 es_ES
dc.description.references Martinez-Franco R, Moliner M, Thogersen JR, Corma A (2013) ChemCatChem 5:3316–3323 es_ES
dc.description.references Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Chem Commun 48:8264–8266 es_ES
dc.description.references Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82 es_ES
dc.description.references Pietrzyk P, Podolska K, Sojka Z (2013) Electron Paramagn Reson 23:264–311 es_ES
dc.description.references Malkin E, Repisky M, Komorovsky S, Mach P, Malkina OL, Malkin VG (2011) J Chem Phys 134:044111-1–044111-8 es_ES
dc.description.references Hrobarik P, Repisky M, Komorovsky S, Hrobarikova V, Kaupp M (2011) Theoret Chem Acc129:715–725 es_ES
dc.description.references Gohr S, Hrobarik P, Repisky M, Komorovsky S, Ruud K, Kaupp M (2015) J Phys Chem A 119:12892–12905 es_ES
dc.description.references Neese F (2012) The ORCA program system. Wiley Interdiscip Rev 2:73–78 es_ES
dc.description.references Neese F (2005) J Chem Phys 122:034107-1–034107-13 es_ES
dc.description.references Neese F (2003) J Chem Phys 118:3939–3948 es_ES
dc.description.references Neese F (2001) J Chem Phys 115:11080–11096 es_ES
dc.description.references Kossmann S, Kirchner B, Neese F (2007) Mol Phys 105:2049–2071 es_ES
dc.description.references Ames WM, Larsen SC (2009) J Phys Chem A 113:4305–4312 es_ES
dc.description.references Zunger A, Perdew JP (1981) Phys Rev B 23:5048–5079 es_ES
dc.description.references King, Mebel, McGrady, Eisenstein, Macgregor, Pyykko, Hay, Bridgeman, Frenking, Deeth, Maseras, Poater, Kaltsoyannis, Cox, Stace (2003) Faraday Discuss 124:275–288 es_ES
dc.description.references Neese F (2009) Coord Chem Rev 253:526–563 es_ES
dc.description.references Neese F (2007) Electron Paramagn Reson 20:73–95 es_ES
dc.description.references Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186 es_ES
dc.description.references Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775 es_ES
dc.description.references Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249 es_ES
dc.description.references Blöchl P (1994) Phys Rev B 50:17953–17979 es_ES
dc.description.references Becke AD (1993) J Chem Phys 98:5648–5652 es_ES
dc.description.references Becke AD (1998) Phys Rev A 38:3098–3100 es_ES
dc.description.references Lee CT, Yang WT, Parr RGD (1998) Phys Rev B 37:785–789 es_ES
dc.description.references Heß BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371 es_ES
dc.description.references Neese F (2003) J Comput Chem 24:1740–1747 es_ES
dc.description.references Kutzelnigg W, Fleischer U, Schindler M (1990) NMR-basic principles and progress. Springer-Verlag, Heidelberg es_ES
dc.description.references Neese F (2002) Inorg Chim Acta 337:181–192 es_ES
dc.description.references Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44:2245–2254 es_ES
dc.description.references Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF (2014) J Catal 319:1–14 es_ES
dc.description.references Conesa JC, Soria J (1979) J Chem Soc Faraday Trans 75:406–422 es_ES
dc.description.references de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187 es_ES
dc.description.references Zamadics M, Kevan L (1992) J Phys Chem 96:8989–8993 es_ES
dc.description.references Ma L, Cheng YS, Cavataio G, McCabe RW, Fu LX, Li JH (2013) Chem Eng J 225:323–330 es_ES
dc.description.references Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457 es_ES
dc.description.references Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:2652–2657 es_ES
dc.description.references Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:5488–5491 es_ES
dc.description.references Liu X, Wu X, Weng D, Si Z, Ran R (2017) Catal Today 281:596–604 es_ES
dc.description.references Wang J, Yu T, Wang XQ, Qi GS, Xue JJ, Shen MQ, Li W (2012) Appl. Catal. B 127:137–147 es_ES
dc.description.references Fickel DW, Lobo R (2010) J Phys Chem C 114:1633–1640 es_ES
dc.description.references Di Iorio JR, Gounder R (2016) Chem Mater 28:2236–2247 es_ES
dc.description.references Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048 es_ES
dc.description.references Godiksen A, Isaksen OI, Rasmussen SB, Vennestrom PNR, Mossin, S (2018) ChemCatChem 10:366–370 es_ES
dc.description.references Uzunova EL, Mikosch H, Hafner J (2009) J Mol Struct 912:88–94 es_ES
dc.description.references Kucherov AV, Karge HG, Schlogl R (1998) Microporous Mesoporous Mater 25:7–14 es_ES
dc.description.references Dedecek J, Sobalík Z, Tvaruzkova D, Kaucky D, Wichterlova B (1995) J Phys Chem 99:16327–16337 es_ES
dc.description.references Kucherov AV, Slinkin AA, Kondrat’ev DA, Bondarenko TN, Rubinstein AM, Minachev Kh M (1985) Zeolites 5:320–324 es_ES
dc.description.references Kucherov AV, Gerlock JL, Jen HW, Shelef M (1994) J Phys Chem 98:4892–4894 es_ES
dc.description.references Dedecek J, Balgova V, Pashkova V, Klein P, Wichterlova B (2012) Chem Mat 24:3231–3239 es_ES
dc.description.references Nachtigallova D, Nachtigall P, Sauer J (2001) Phys Chem Chem Phys 3:1552–1559 es_ES
dc.description.references Wichterlova B, Dedecek J, Sobalik Z (1998) In: Treacy MMJ, Marcus BK, Bisher ME, Higgins JB (eds.) Proceedings of the 12th International Zeolite Conference, Materials Research Society, Baltimore, USA, pp. 941–973 es_ES
dc.description.references Moreno-Gonzalez M, Hueso B, Boronat M, Blasco T, Corma A (2015) J Phys Chem Lett 6:1011–1017 es_ES
dc.description.references Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) J Am Chem Soc 138:12025–12028 es_ES
dc.description.references Sojka Z, Che M, Giamello E (1997) J Phys Chem B 101:4831–4838 es_ES
dc.description.references Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396 es_ES
dc.description.references Umamaheswari V, Hartmann M, Poppl A (2005) J Phys Chem B 109:1537–1546 es_ES
dc.description.references Moreno-Gonzalez M, Palomares AE, Chiesa M, Boronat M, Giamello E, Blasco T (2017) ACS Catal 7:3501–3509 es_ES
dc.description.references Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics, Norcross es_ES
dc.description.references Yahiro H, Ohmori Y, Shiotani M (2005) Microporous Mesoporous Mater 83:165–171 es_ES
dc.description.references Il’ichev AN, Ukharsky AA, Matyshak VA (1996) Mendeleev Commun 6:57–59 es_ES
dc.description.references Matyshak VA, Il’ichev AN, Ukharsky AA, Korchak VN (1997) J Catal 171:245–254 es_ES
dc.description.references Kucherov AV, Gerlock GL, Jen HW, Shelef M (1996) Catal Today 27:79–84 es_ES
dc.description.references Giamello E, Murphy D, Magnacca G, Morterra C, Shioya Y, Nomura T, Anpo M (1992) J Catal 136:510–520 es_ES
dc.description.references Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256 es_ES
dc.description.references Pietrzyk P, Gil B, Sojka Z (2007) Catal Today 126:103–111 es_ES
dc.description.references Konduru MV, Chuang SSC (2000) J Catal 196:271–286 es_ES
dc.description.references Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5:2832–2845 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem