Mostrar el registro sencillo del ítem
dc.contributor.author | Zhang, H | es_ES |
dc.contributor.author | Tang, Dunbing | es_ES |
dc.contributor.author | Zheng, Kun | es_ES |
dc.contributor.author | Giret Boggino, Adriana Susana | es_ES |
dc.date.accessioned | 2020-06-04T06:30:45Z | |
dc.date.available | 2020-06-04T06:30:45Z | |
dc.date.issued | 2018-01-01 | es_ES |
dc.identifier.issn | 0954-4054 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145201 | |
dc.description.abstract | [EN] Due to the international business competition of modern manufacturing enterprises, production systems are forced to quickly respond to the emergence of changing conditions. Production control has become more challenging as production systems adapt to frequent demand variation. The neuroendocrine system is a perfect system which plays an important role in controlling and modulating the adaptive behavior of organic cells under stimulus using hormone-regulation principles. Inherited from the hormone-regulation principle, an adaptive control model of production system integrated with a backlog controller and a work-in-progress controller is presented to reduce backlog variation and keep a defined work-in-progress level. The simulation results show that the presented control model is more responsive and robust against demand disturbances such as rush orders in production system. | es_ES |
dc.description.sponsorship | This research was supported by National Science Foundation of China (NSFC) (Grant No. 51575264), Jiangsu Province Science Foundation for Excellent Youths (Grant No. BK20121011), and European Union Seventh Framework Program (FP7) (Grant No. 294931). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Production control | es_ES |
dc.subject | Backlog | es_ES |
dc.subject | Work in progress | es_ES |
dc.subject | Hormone regulation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Production control strategy inspired by neuroendocrine regulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954405416639889 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51575264/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Jiangsu Province Science Foundation for Excellent Youths//BK20121011/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Zhang, H.; Tang, D.; Zheng, K.; Giret Boggino, AS. (2018). Production control strategy inspired by neuroendocrine regulation. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 232(1):67-77. https://doi.org/10.1177/0954405416639889 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0954405416639889 | es_ES |
dc.description.upvformatpinicio | 67 | es_ES |
dc.description.upvformatpfin | 77 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 232 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\316665 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Jiangsu Province Science Foundation for Excellent Youths, China | es_ES |
dc.description.references | Lee, C.-W., Doh, H.-H., & Lee, D.-H. (2014). Capacity and production planning for a hybrid system with manufacturing and remanufacturing facilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(9), 1645-1653. doi:10.1177/0954405414539485 | es_ES |
dc.description.references | Ueda, K., Kito, T., & Fujii, N. (2006). Modeling Biological Manufacturing Systems with Bounded-Rational Agents. CIRP Annals, 55(1), 469-472. doi:10.1016/s0007-8506(07)60461-2 | es_ES |
dc.description.references | Chan, F., Tibrewal, R. K., Prakash, A., & Tiwari, M. (2014). A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1), 157-171. doi:10.1177/0954405414523594 | es_ES |
dc.description.references | Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734 | es_ES |
dc.description.references | Kim, J.-H., & Duffie, N. A. (2004). Backlog Control Design for a Closed Loop PPC System. CIRP Annals, 53(1), 357-360. doi:10.1016/s0007-8506(07)60716-1 | es_ES |
dc.description.references | Duffie, N., & Falu, I. (2002). Control-Theoretic Analysis of a Closed-Loop PPC System. CIRP Annals, 51(1), 379-382. doi:10.1016/s0007-8506(07)61541-8 | es_ES |
dc.description.references | Nyhuis, F., & Pereira Filho, N. A. (2002). Methods and tools for dynamic capacity planning and control. Gestão & Produção, 9(3), 245-260. doi:10.1590/s0104-530x2002000300004 | es_ES |
dc.description.references | Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9 | es_ES |
dc.description.references | Evans, W. S., Farhy, L. S., & Johnson, M. L. (2009). Chapter 14 Biomathematical Modeling of Pulsatile Hormone Secretion. Computer Methods, Part A, 345-366. doi:10.1016/s0076-6879(08)03814-7 | es_ES |
dc.description.references | TOWILL, D. R. (1982). Dynamic analysis of an inventory and order based production control system. International Journal of Production Research, 20(6), 671-687. doi:10.1080/00207548208947797 | es_ES |
dc.description.references | Qiu, M. M., Fredendall, L. D., & Zhu, Z. (2001). Application of hierarchical production planning in a multiproduct, multimachine environment. International Journal of Production Research, 39(13), 2803-2816. doi:10.1080/00207540110052571 | es_ES |
dc.description.references | Ivanov, D., Dolgui, A., & Sokolov, B. (2012). Applicability of optimal control theory to adaptive supply chain planning and scheduling. Annual Reviews in Control, 36(1), 73-84. doi:10.1016/j.arcontrol.2012.03.006 | es_ES |
dc.description.references | Deif, A. M., & ElMaraghy, W. H. (2006). Effect of Time-Based Parameters on the Agility of a Dynamic MPC System. CIRP Annals, 55(1), 437-440. doi:10.1016/s0007-8506(07)60453-3 | es_ES |
dc.description.references | Wiendahl, H.-P. (1995). Load-Oriented Manufacturing Control. doi:10.1007/978-3-642-57743-7 | es_ES |
dc.description.references | Wiendahl, H.-P., & Breithaupt, J.-W. (2000). Automatic production control applying control theory. International Journal of Production Economics, 63(1), 33-46. doi:10.1016/s0925-5273(98)00253-9 | es_ES |
dc.description.references | Wiendahl, H.-P., & Breithaupt, J.-W. (2001). Backlog-oriented Automatic Production Control. CIRP Annals, 50(1), 331-334. doi:10.1016/s0007-8506(07)62133-7 | es_ES |
dc.description.references | Laperrière, L. (2010). Dynamic production control using a flow based formulation. CIRP Annals, 59(1), 457-460. doi:10.1016/j.cirp.2010.03.090 | es_ES |
dc.description.references | Jeken, O., Duffie, N., Windt, K., Blunck, H., Chehade, A., & Rekersbrink, H. (2012). Dynamics of autonomously acting products and work systems in production and assembly. CIRP Journal of Manufacturing Science and Technology, 5(4), 267-275. doi:10.1016/j.cirpj.2012.09.012 | es_ES |
dc.description.references | Little, J. D. C. (1961). A Proof for the Queuing Formula:L= λW. Operations Research, 9(3), 383-387. doi:10.1287/opre.9.3.383 | es_ES |