- -

Production control strategy inspired by neuroendocrine regulation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Production control strategy inspired by neuroendocrine regulation

Show simple item record

Files in this item

dc.contributor.author Zhang, H es_ES
dc.contributor.author Tang, Dunbing es_ES
dc.contributor.author Zheng, Kun es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.date.accessioned 2020-06-04T06:30:45Z
dc.date.available 2020-06-04T06:30:45Z
dc.date.issued 2018-01-01 es_ES
dc.identifier.issn 0954-4054 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145201
dc.description.abstract [EN] Due to the international business competition of modern manufacturing enterprises, production systems are forced to quickly respond to the emergence of changing conditions. Production control has become more challenging as production systems adapt to frequent demand variation. The neuroendocrine system is a perfect system which plays an important role in controlling and modulating the adaptive behavior of organic cells under stimulus using hormone-regulation principles. Inherited from the hormone-regulation principle, an adaptive control model of production system integrated with a backlog controller and a work-in-progress controller is presented to reduce backlog variation and keep a defined work-in-progress level. The simulation results show that the presented control model is more responsive and robust against demand disturbances such as rush orders in production system. es_ES
dc.description.sponsorship This research was supported by National Science Foundation of China (NSFC) (Grant No. 51575264), Jiangsu Province Science Foundation for Excellent Youths (Grant No. BK20121011), and European Union Seventh Framework Program (FP7) (Grant No. 294931). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Production control es_ES
dc.subject Backlog es_ES
dc.subject Work in progress es_ES
dc.subject Hormone regulation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Production control strategy inspired by neuroendocrine regulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954405416639889 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51575264/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Jiangsu Province Science Foundation for Excellent Youths//BK20121011/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Zhang, H.; Tang, D.; Zheng, K.; Giret Boggino, AS. (2018). Production control strategy inspired by neuroendocrine regulation. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 232(1):67-77. https://doi.org/10.1177/0954405416639889 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954405416639889 es_ES
dc.description.upvformatpinicio 67 es_ES
dc.description.upvformatpfin 77 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 232 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\316665 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Jiangsu Province Science Foundation for Excellent Youths, China es_ES
dc.description.references Lee, C.-W., Doh, H.-H., & Lee, D.-H. (2014). Capacity and production planning for a hybrid system with manufacturing and remanufacturing facilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(9), 1645-1653. doi:10.1177/0954405414539485 es_ES
dc.description.references Ueda, K., Kito, T., & Fujii, N. (2006). Modeling Biological Manufacturing Systems with Bounded-Rational Agents. CIRP Annals, 55(1), 469-472. doi:10.1016/s0007-8506(07)60461-2 es_ES
dc.description.references Chan, F., Tibrewal, R. K., Prakash, A., & Tiwari, M. (2014). A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1), 157-171. doi:10.1177/0954405414523594 es_ES
dc.description.references Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734 es_ES
dc.description.references Kim, J.-H., & Duffie, N. A. (2004). Backlog Control Design for a Closed Loop PPC System. CIRP Annals, 53(1), 357-360. doi:10.1016/s0007-8506(07)60716-1 es_ES
dc.description.references Duffie, N., & Falu, I. (2002). Control-Theoretic Analysis of a Closed-Loop PPC System. CIRP Annals, 51(1), 379-382. doi:10.1016/s0007-8506(07)61541-8 es_ES
dc.description.references Nyhuis, F., & Pereira Filho, N. A. (2002). Methods and tools for dynamic capacity planning and control. Gestão & Produção, 9(3), 245-260. doi:10.1590/s0104-530x2002000300004 es_ES
dc.description.references Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9 es_ES
dc.description.references Evans, W. S., Farhy, L. S., & Johnson, M. L. (2009). Chapter 14 Biomathematical Modeling of Pulsatile Hormone Secretion. Computer Methods, Part A, 345-366. doi:10.1016/s0076-6879(08)03814-7 es_ES
dc.description.references TOWILL, D. R. (1982). Dynamic analysis of an inventory and order based production control system. International Journal of Production Research, 20(6), 671-687. doi:10.1080/00207548208947797 es_ES
dc.description.references Qiu, M. M., Fredendall, L. D., & Zhu, Z. (2001). Application of hierarchical production planning in a multiproduct, multimachine environment. International Journal of Production Research, 39(13), 2803-2816. doi:10.1080/00207540110052571 es_ES
dc.description.references Ivanov, D., Dolgui, A., & Sokolov, B. (2012). Applicability of optimal control theory to adaptive supply chain planning and scheduling. Annual Reviews in Control, 36(1), 73-84. doi:10.1016/j.arcontrol.2012.03.006 es_ES
dc.description.references Deif, A. M., & ElMaraghy, W. H. (2006). Effect of Time-Based Parameters on the Agility of a Dynamic MPC System. CIRP Annals, 55(1), 437-440. doi:10.1016/s0007-8506(07)60453-3 es_ES
dc.description.references Wiendahl, H.-P. (1995). Load-Oriented Manufacturing Control. doi:10.1007/978-3-642-57743-7 es_ES
dc.description.references Wiendahl, H.-P., & Breithaupt, J.-W. (2000). Automatic production control applying control theory. International Journal of Production Economics, 63(1), 33-46. doi:10.1016/s0925-5273(98)00253-9 es_ES
dc.description.references Wiendahl, H.-P., & Breithaupt, J.-W. (2001). Backlog-oriented Automatic Production Control. CIRP Annals, 50(1), 331-334. doi:10.1016/s0007-8506(07)62133-7 es_ES
dc.description.references Laperrière, L. (2010). Dynamic production control using a flow based formulation. CIRP Annals, 59(1), 457-460. doi:10.1016/j.cirp.2010.03.090 es_ES
dc.description.references Jeken, O., Duffie, N., Windt, K., Blunck, H., Chehade, A., & Rekersbrink, H. (2012). Dynamics of autonomously acting products and work systems in production and assembly. CIRP Journal of Manufacturing Science and Technology, 5(4), 267-275. doi:10.1016/j.cirpj.2012.09.012 es_ES
dc.description.references Little, J. D. C. (1961). A Proof for the Queuing Formula:L= λW. Operations Research, 9(3), 383-387. doi:10.1287/opre.9.3.383 es_ES


This item appears in the following Collection(s)

Show simple item record