Mostrar el registro sencillo del ítem
dc.contributor.author | Garcia-Bernabeu, Ana | es_ES |
dc.contributor.author | Hilario Caballero, Adolfo | es_ES |
dc.contributor.author | Pla Santamaría, David | es_ES |
dc.contributor.author | Salas-Molina, Francisco | es_ES |
dc.date.accessioned | 2020-06-04T06:30:49Z | |
dc.date.available | 2020-06-04T06:30:49Z | |
dc.date.issued | 2020-01-15 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145203 | |
dc.description.abstract | [EN] The purpose of this contribution is to develop a Circular Economy Composite indicator to benchmark EU countries performance. Europe is at the forefront of the global transition towards a sustainable and circular economy. To this end, the European Commission has launched in 2015 a Circular Economy Action Plan including a monitoring framework to measure progress and to assess the effectiveness of initiatives towards the circular economy in the European Union (EU) and Member States. Still, this monitoring framework lacks a composite indicator at the national level to aggregate the circular economy dimensions into a single summary indicator. Although there is a wide range of sustainability composite indicators, no aggregate circular economy index exits to this date. We use a multi-criteria approach to construct a circular economy composite index based on TOPSIS (Technique for Order Preferences by Similarity to Ideal Solutions) methodology. In addition, we introduce a novel aggregation methodology for building a composite indicator where different levels of compensability for the distances to the ideal and anti-ideal (or negative-ideal) values of each indicator are considered. In order to illustrate the advantages of this proposal, we have applied it to evaluate the Circular Economy performance of EU Member States for the year 2016. This proposal can be a valuable tool for identifying areas in which the countries need to concentrate their efforts to boost their circular economy performance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Circular economy | es_ES |
dc.subject | Composite indicators | es_ES |
dc.subject | Multi-criteria analysis | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | TOPSIS | es_ES |
dc.subject.classification | ECONOMIA APLICADA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A Process Oriented MCDM Approach to Construct a Circular Economy Composite Index | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12020618 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Garcia-Bernabeu, A.; Hilario Caballero, A.; Pla Santamaría, D.; Salas-Molina, F. (2020). A Process Oriented MCDM Approach to Construct a Circular Economy Composite Index. Sustainability. 12(2):1-14. https://doi.org/10.3390/su12020618 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12020618 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\400794 | es_ES |
dc.description.references | Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. C. L. (2017). Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega, 66, 344-357. doi:10.1016/j.omega.2015.05.015 | es_ES |
dc.description.references | Di Maio, F., & Rem, P. C. (2015). A Robust Indicator for Promoting Circular Economy through Recycling. Journal of Environmental Protection, 06(10), 1095-1104. doi:10.4236/jep.2015.610096 | es_ES |
dc.description.references | Geng, Y., Sarkis, J., Ulgiati, S., & Zhang, P. (2013). Measuring China’s Circular Economy. Science, 339(6127), 1526-1527. doi:10.1126/science.1227059 | es_ES |
dc.description.references | Geng, Y., Fu, J., Sarkis, J., & Xue, B. (2012). Towards a national circular economy indicator system in China: an evaluation and critical analysis. Journal of Cleaner Production, 23(1), 216-224. doi:10.1016/j.jclepro.2011.07.005 | es_ES |
dc.description.references | Elia, V., Gnoni, M. G., & Tornese, F. (2017). Measuring circular economy strategies through index methods: A critical analysis. Journal of Cleaner Production, 142, 2741-2751. doi:10.1016/j.jclepro.2016.10.196 | es_ES |
dc.description.references | Huijbregts, M. A. J., Rombouts, L. J. A., Hellweg, S., Frischknecht, R., Hendriks, A. J., van de Meent, D., … Struijs, J. (2006). Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products? Environmental Science & Technology, 40(3), 641-648. doi:10.1021/es051689g | es_ES |
dc.description.references | Brown, M. T., & Ulgiati, S. (2004). Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecological Modelling, 178(1-2), 201-213. doi:10.1016/j.ecolmodel.2004.03.002 | es_ES |
dc.description.references | Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization, 4(2), 121-130. doi:10.1177/095624789200400212 | es_ES |
dc.description.references | Wiedmann, T., & Barrett, J. (2010). A Review of the Ecological Footprint Indicator—Perceptions and Methods. Sustainability, 2(6), 1645-1693. doi:10.3390/su2061645 | es_ES |
dc.description.references | Narodoslawsky, M., & Krotscheck, C. (1995). The sustainable process index (SPI): evaluating processes according to environmental compatibility. Journal of Hazardous Materials, 41(2-3), 383-397. doi:10.1016/0304-3894(94)00114-v | es_ES |
dc.description.references | Munda, G. (2005). «Measuring Sustainability»: A Multi-Criterion Framework. Environment, Development and Sustainability, 7(1), 117-134. doi:10.1007/s10668-003-4713-0 | es_ES |
dc.description.references | Janeiro, L., & Patel, M. K. (2015). Choosing sustainable technologies. Implications of the underlying sustainability paradigm in the decision-making process. Journal of Cleaner Production, 105, 438-446. doi:10.1016/j.jclepro.2014.01.029 | es_ES |
dc.description.references | Diaz-Balteiro, L., González-Pachón, J., & Romero, C. (2017). Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research, 258(2), 607-616. doi:10.1016/j.ejor.2016.08.075 | es_ES |
dc.description.references | Wilson, M. C., & Wu, J. (2016). The problems of weak sustainability and associated indicators. International Journal of Sustainable Development & World Ecology, 24(1), 44-51. doi:10.1080/13504509.2015.1136360 | es_ES |
dc.description.references | Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-Labor Substitution and Economic Efficiency. The Review of Economics and Statistics, 43(3), 225. doi:10.2307/1927286 | es_ES |
dc.description.references | Blackorby, C., Donaldson, D., & Weymark, J. A. (1982). A normative approach to industrial-performance evaluation and concentration indices. European Economic Review, 19(1), 89-121. doi:10.1016/0014-2921(82)90007-1 | es_ES |
dc.description.references | Rennings, K., Ludwig Brockmann, K., & Bergmann, H. (1997). Voluntary agreements in environmental protection: experiences in Germany and future perspectives. Business Strategy and the Environment, 6(5), 245-263. doi:10.1002/(sici)1099-0836(199711)6:5<245::aid-bse104>3.0.co;2-f | es_ES |
dc.description.references | Mathews, J. A., & Tan, H. (2016). Circular economy: Lessons from China. Nature, 531(7595), 440-442. doi:10.1038/531440a | es_ES |
dc.description.references | Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., … Tarantola, S. (2008). Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index. Journal of the Operational Research Society, 59(2), 239-251. doi:10.1057/palgrave.jors.2602445 | es_ES |
dc.description.references | Giannetti, B. F., Bonilla, S. H., Silva, C. C., & Almeida, C. M. V. B. (2009). The reliability of experts’ opinions in constructing a composite environmental index: The case of ESI 2005. Journal of Environmental Management, 90(8), 2448-2459. doi:10.1016/j.jenvman.2008.12.018 | es_ES |
dc.description.references | Makkonen, T., & van der Have, R. P. (2012). Benchmarking regional innovative performance: composite measures and direct innovation counts. Scientometrics, 94(1), 247-262. doi:10.1007/s11192-012-0753-2 | es_ES |
dc.description.references | Mazziotta, M., & Pareto, A. (2015). On a Generalized Non-compensatory Composite Index for Measuring Socio-economic Phenomena. Social Indicators Research, 127(3), 983-1003. doi:10.1007/s11205-015-0998-2 | es_ES |
dc.description.references | Greco, M., Mazziotta, M., & Pareto, A. (2016). A Composite Index to Measure the Italian «Enological Vocation». Agriculture and Agricultural Science Procedia, 8, 691-697. doi:10.1016/j.aaspro.2016.02.045 | es_ES |
dc.description.references | Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141(1), 61-94. doi:10.1007/s11205-017-1832-9 | es_ES |
dc.description.references | Attardi, R., Cerreta, M., Sannicandro, V., & Torre, C. M. (2018). Non-compensatory composite indicators for the evaluation of urban planning policy: The Land-Use Policy Efficiency Index (LUPEI). European Journal of Operational Research, 264(2), 491-507. doi:10.1016/j.ejor.2017.07.064 | es_ES |
dc.description.references | Angilella, S., Catalfo, P., Corrente, S., Giarlotta, A., Greco, S., & Rizzo, M. (2018). Robust sustainable development assessment with composite indices aggregating interacting dimensions: The hierarchical-SMAA-Choquet integral approach. Knowledge-Based Systems, 158, 136-153. doi:10.1016/j.knosys.2018.05.041 | es_ES |
dc.description.references | Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators. European Journal of Operational Research, 278(3), 942-960. doi:10.1016/j.ejor.2019.04.012 | es_ES |
dc.description.references | Ruiz, F., El Gibari, S., Cabello, J. M., & Gómez, T. (2020). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega, 95, 102060. doi:10.1016/j.omega.2019.04.003 | es_ES |
dc.description.references | Sands, G. R., & Podmore, T. H. (2000). A generalized environmental sustainability index for agricultural systems. Agriculture, Ecosystems & Environment, 79(1), 29-41. doi:10.1016/s0167-8809(99)00147-4 | es_ES |
dc.description.references | Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5 | es_ES |
dc.description.references | Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2007). Development of composite sustainability performance index for steel industry. Ecological Indicators, 7(3), 565-588. doi:10.1016/j.ecolind.2006.06.004 | es_ES |
dc.description.references | Ülengin, B., Ülengin, F., & Güvenç, Ü. (2001). A multidimensional approach to urban quality of life: The case of Istanbul. European Journal of Operational Research, 130(2), 361-374. doi:10.1016/s0377-2217(00)00047-3 | es_ES |
dc.description.references | Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. B., & Newson, S. E. (2011). The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere, 2(9), art100. doi:10.1890/es11-00186.1 | es_ES |
dc.description.references | El Gibari, S., Gómez, T., & Ruiz, F. (2018). Building composite indicators using multicriteria methods: a review. Journal of Business Economics, 89(1), 1-24. doi:10.1007/s11573-018-0902-z | es_ES |
dc.description.references | Gan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81, 491-502. doi:10.1016/j.ecolind.2017.05.068 | es_ES |
dc.description.references | Li, H., Bao, W., Xiu, C., Zhang, Y., & Xu, H. (2010). Energy conservation and circular economy in China’s process industries. Energy, 35(11), 4273-4281. doi:10.1016/j.energy.2009.04.021 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible | es_ES |
dc.subject.ods | 16.- Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a todos los niveles | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |
dc.subject.ods | 10.- Reducir las desigualdades entre países y dentro de ellos | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |