- -

The Next White (NEW) detector

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Next White (NEW) detector

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monrabal, F. es_ES
dc.contributor.author Gomez-Cadenas, J. J. es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.contributor.author Laing, A. es_ES
dc.contributor.author Álvarez-Puerta, Vicente es_ES
dc.contributor.author Benlloch-Rodriguez, J. M. es_ES
dc.contributor.author Carcel, S. es_ES
dc.contributor.author Carrion, J es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Felkai, R. es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Martinez, A. es_ES
dc.contributor.author Musti, M. es_ES
dc.contributor.author Ouero, M. es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.date.accessioned 2020-06-04T06:30:57Z
dc.date.available 2020-06-04T06:30:57Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 1748-0221 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145207
dc.description.abstract [EN] Conceived to host 5 kg of xenón at a pressure of 15 bar in the ¿ducial volume,the NEXTWhite (NEW)apparatus is currently the largest high pressure xenon gas TPC using electroluminescent ampli¿cation in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for ßß0¿ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2017 at the Canfranc Underground Laboratory (LSC), in Spain. This paper describes the detector and associated infrastructures. es_ES
dc.description.sponsorship The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contract numbers DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M), DE-SC0017721 (University of Texas at Arlington), and DE-AC02-06CH11357 (Argonne National Laboratory); and the University of Texas at Arlington. We also warmly acknowledge the Laboratorio Nazionale di Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Instrumentation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutrinoless double beta decay es_ES
dc.subject Time Projection Chamber (TPC) es_ES
dc.subject High-pressure xenon chambers es_ES
dc.subject Xenon es_ES
dc.subject NEXT-100 experiment es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title The Next White (NEW) detector es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-0221/13/12/P12010 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0017721/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/PTDC/PTDC%2FFIS-NUC%2F2525%2F2014/PT/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2016-0692/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/UID/UID%2FFIS%2F04559%2F2013/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ES/Aprendizaje profundo en análisis de detectores en física/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Monrabal, F.; Gomez-Cadenas, JJ.; Toledo Alarcón, JF.; Laing, A.; Álvarez-Puerta, V.; Benlloch-Rodriguez, JM.; Carcel, S.... (2018). The Next White (NEW) detector. Journal of Instrumentation. 13:1-35. https://doi.org/10.1088/1748-0221/13/12/P12010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1088/1748-0221/13/12/P12010 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.relation.pasarela S\370031 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222 es_ES
dc.description.references Gómez Cadenas, J. J., Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., … Dias, T. H. V. T. (2014). Present Status and Future Perspectives of the NEXT Experiment. Advances in High Energy Physics, 2014, 1-22. doi:10.1155/2014/907067 es_ES
dc.description.references Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159 es_ES
dc.description.references Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002 es_ES
dc.description.references Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array. Journal of Instrumentation, 8(09), P09011-P09011. doi:10.1088/1748-0221/8/09/p09011 es_ES
dc.description.references Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123 es_ES
dc.description.references Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104 es_ES
dc.description.references López-March, N. (2017). Sensitivity of the NEXT-100 detector to neutrinoless double beta decay. Journal of Physics: Conference Series, 888, 012243. doi:10.1088/1742-6596/888/1/012243 es_ES
dc.description.references Álvarez, V., Borges, F. I. G., Cárcel, S., Cebrián, S., Cervera, A., Conde, C. A. N., … Esteve, R. (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation, 8(05), P05025-P05025. doi:10.1088/1748-0221/8/05/p05025 es_ES
dc.description.references Gehman, V. M., Seibert, S. R., Rielage, K., Hime, A., Sun, Y., Mei, D.-M., … Moore, D. (2011). Fluorescence efficiency and visible re-emission spectrum of tetraphenyl butadiene films at extreme ultraviolet wavelengths. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 654(1), 116-121. doi:10.1016/j.nima.2011.06.088 es_ES
dc.description.references Sanguino, P., Balau, F., Botelho do Rego, A. M., Pereira, A., & Chepel, V. (2016). Stability of tetraphenyl butadiene thin films in liquid xenon. Thin Solid Films, 600, 65-70. doi:10.1016/j.tsf.2016.01.006 es_ES
dc.description.references Silva, C., Pinto da Cunha, J., Pereira, A., Chepel, V., Lopes, M. I., Solovov, V., & Neves, F. (2010). Reflectance of polytetrafluoroethylene for xenon scintillation light. Journal of Applied Physics, 107(6), 064902. doi:10.1063/1.3318681 es_ES
dc.description.references Christophorou, L. G. (1988). Insulating gases. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 268(2-3), 424-433. doi:10.1016/0168-9002(88)90550-5 es_ES
dc.description.references Vijh, A. K. (1985). Relative electric strengths and polarizabilities of gaseous dielectrics. Materials Chemistry and Physics, 12(3), 287-296. doi:10.1016/0254-0584(85)90098-7 es_ES
dc.description.references Rebel, B., Hall, C., Bernard, E., Faham, C. H., Ito, T. M., Lundberg, B., … Wang, H. (2014). High voltage in noble liquids for high energy physics. Journal of Instrumentation, 9(08), T08004-T08004. doi:10.1088/1748-0221/9/08/t08004 es_ES
dc.description.references Cebrián, S., Pérez, J., Bandac, I., Labarga, L., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2017). Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. Journal of Instrumentation, 12(08), T08003-T08003. doi:10.1088/1748-0221/12/08/t08003 es_ES
dc.description.references Lung, K., Arisaka, K., Bargetzi, A., Beltrame, P., Cahill, A., Genma, T., … Yoshizawa, Y. (2012). Characterization of the Hamamatsu R11410-10 3-in. photomultiplier tube for liquid xenon dark matter direct detection experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 696, 32-39. doi:10.1016/j.nima.2012.08.052 es_ES
dc.description.references Rodríguez, J., Toledo, J., Esteve, R., Lorca, D., & Monrabal, F. (2015). The front-end electronics for the 1.8-kchannel SiPM tracking plane in the NEW detector. Journal of Instrumentation, 10(01), C01025-C01025. doi:10.1088/1748-0221/10/01/c01025 es_ES
dc.description.references Carena, F., Carena, W., Chapeland, S., Chibante Barroso, V., Costa, F., Dénes, E., … von Haller, B. (2014). The ALICE data acquisition system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 741, 130-162. doi:10.1016/j.nima.2013.12.015 es_ES
dc.description.references Martoiu, S., Muller, H., Tarazona, A., & Toledo, J. (2013). Development of the scalable readout system for micro-pattern gas detectors and other applications. Journal of Instrumentation, 8(03), C03015-C03015. doi:10.1088/1748-0221/8/03/c03015 es_ES
dc.description.references Toledo, J., Muller, H., Esteve, R., Monzó, J. M., Tarazona, A., & Martoiu, S. (2011). The Front-End Concentrator card for the RD51 Scalable Readout System. Journal of Instrumentation, 6(11), C11028-C11028. doi:10.1088/1748-0221/6/11/c11028 es_ES
dc.description.references Esteve, R., Toledo, J., Rodríguez, J., Querol, M., & Álvarez, V. (2016). Readout and data acquisition in the NEXT-NEW Detector based on SRS-ATCA. Journal of Instrumentation, 11(01), C01008-C01008. doi:10.1088/1748-0221/11/01/c01008 es_ES
dc.description.references Esteve, R., Toledo, J., Monrabal, F., Lorca, D., Serra, L., Marí, A., … Mora, F. (2012). The trigger system in the NEXT-DEMO detector. Journal of Instrumentation, 7(12), C12001-C12001. doi:10.1088/1748-0221/7/12/c12001 es_ES
dc.description.references Herzenberg, A. (1969). Attachment of Slow Electrons to Oxygen Molecules. The Journal of Chemical Physics, 51(11), 4942-4950. doi:10.1063/1.1671887 es_ES
dc.description.references Huk, M., Igo-Kemenes, P., & Wagner, A. (1988). Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 267(1), 107-119. doi:10.1016/0168-9002(88)90635-3 es_ES
dc.description.references Novella, P., Palmeiro, B., Simón, A., Sorel, M., Adams, C., … Zuzel, G. (2018). Measurement of radon-induced backgrounds in the NEXT double beta decay experiment. Journal of High Energy Physics, 2018(10). doi:10.1007/jhep10(2018)112 es_ES
dc.description.references Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 863, 35-46. doi:10.1016/j.nima.2017.02.086 es_ES
dc.description.references Simón, A., Felkai, R., Martínez-Lema, G., Monrabal, F., González-Díaz, D., Sorel, M., … Álvarez, V. (2018). Electron drift properties in high pressure gaseous xenon. Journal of Instrumentation, 13(07), P07013-P07013. doi:10.1088/1748-0221/13/07/p07013 es_ES
dc.description.references Martínez-Lema, G., Morata, J. A. H., Palmeiro, B., Botas, A., Ferrario, P., Monrabal, F., … Para, A. (2018). Calibration of the NEXT-White detector using 83mKr decays. Journal of Instrumentation, 13(10), P10014-P10014. doi:10.1088/1748-0221/13/10/p10014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem