Mostrar el registro sencillo del ítem
dc.contributor.author | Agryzkov, Taras | es_ES |
dc.contributor.author | Pedroche Sánchez, Francisco | es_ES |
dc.contributor.author | Tortosa, Leandro | es_ES |
dc.contributor.author | Vicent, José F. | es_ES |
dc.date.accessioned | 2020-06-06T03:32:17Z | |
dc.date.available | 2020-06-06T03:32:17Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145538 | |
dc.description.abstract | [EN] Identifying the influential nodes in complex networks is a fundamental and practical topic at the moment. In this paper, a new centrality measure for complex networks is proposed based on two contrasting models that have their common origin in the well-known PageRank centrality. On the one hand, the essence of the model proposed is taken from the Adapted PageRank Algorithm (APA) centrality, whose main characteristic is that constitutes a measure to establish a ranking of nodes considering the importance of some dataset associated to the network. On the other hand, a technique known as two-layers PageRank approach is applied to this model. This technique focuses on the idea that the PageRank centrality can be understood as a two-layer network, the topological and teleportation layers, respectively. The main point of the proposed centrality is that it combines the APA centrality with the idea of two-layers; however, the difference now is that the teleportation layer is replaced by a layer that collects the data present in the network. This combination gives rise to a new algorithm for ranking the nodes according to their importance. Subsequently, the coherence of the new measure is demonstrated by calculating the correlation and the quantitative differences of both centralities (APA and the new centrality). A detailed study of the differences of both centralities, taking different types of networks, is performed. A real urban network with data randomly generated is evaluated as well as the well-known Zachary's karate club network. Some numerical results are carried out by varying the values of the alpha parameter-known as dumping factor in PageRank model-that varies the importance given to the two layers (topology and data) within the computation of the new centrality. The proposed algorithm takes the best characteristics of the models on which it is based: on the one hand, it is a measure of centrality, in complex networks with data, whose calculation is stable numerically and, on the other hand, it is able to separate the topological properties of the network and the influence of the data. | es_ES |
dc.description.sponsorship | Partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | ISPRS International Journal of Geo-Information | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Networks centrality | es_ES |
dc.subject | Adapted PageRank Algorithm | es_ES |
dc.subject | PageRank | es_ES |
dc.subject | Two-layers PageRank | es_ES |
dc.subject | Spectral theory | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijgi7120480 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P/ES/ANALISIS Y VISUALIZACION DE LA CIUDAD COMO UNA RED MULTIPLE DE DATOS Y SU IMPLICACION EN EL TURISMO./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Agryzkov, T.; Pedroche Sánchez, F.; Tortosa, L.; Vicent, JF. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information. 7(12):1-22. https://doi.org/10.3390/ijgi7120480 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijgi7120480 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2220-9964 | es_ES |
dc.relation.pasarela | S\374257 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3). doi:10.1103/physreve.73.036125 | es_ES |
dc.description.references | Bonacich, P. (1991). Simultaneous group and individual centralities. Social Networks, 13(2), 155-168. doi:10.1016/0378-8733(91)90018-o | es_ES |
dc.description.references | Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1-37. doi:10.1016/0378-8733(89)90016-6 | es_ES |
dc.description.references | Szell, M., Lambiotte, R., & Thurner, S. (2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636-13641. doi:10.1073/pnas.1004008107 | es_ES |
dc.description.references | Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141-151. doi:10.1109/tits.2010.2074196 | es_ES |
dc.description.references | Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), 1777-1787. doi:10.1016/j.physa.2011.09.017 | es_ES |
dc.description.references | Zhou, Y.-B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New Journal of Physics, 14(3), 033033. doi:10.1088/1367-2630/14/3/033033 | es_ES |
dc.description.references | Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A dual approach. Physica A: Statistical Mechanics and its Applications, 369(2), 853-866. doi:10.1016/j.physa.2005.12.063 | es_ES |
dc.description.references | Jiang, B. (2009). Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science, 23(7), 823-837. doi:10.1080/13658810802022822 | es_ES |
dc.description.references | Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631 | es_ES |
dc.description.references | Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686 | es_ES |
dc.description.references | Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543 | es_ES |
dc.description.references | Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of Mathematical Sociology, 25(2), 163-177. doi:10.1080/0022250x.2001.9990249 | es_ES |
dc.description.references | Haveliwala, T. H. (2003). Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4), 784-796. doi:10.1109/tkde.2003.1208999 | es_ES |
dc.description.references | Berkhin, P. (2005). A Survey on PageRank Computing. Internet Mathematics, 2(1), 73-120. doi:10.1080/15427951.2005.10129098 | es_ES |
dc.description.references | García, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051 | es_ES |
dc.description.references | Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091 | es_ES |
dc.description.references | Bianchini, M., Gori, M., & Scarselli, F. (2005). Inside PageRank. ACM Transactions on Internet Technology, 5(1), 92-128. doi:10.1145/1052934.1052938 | es_ES |
dc.description.references | Migallón, H., Migallón, V., Palomino, J. A., & Penadés, J. (2018). A heuristic relaxed extrapolated algorithm for accelerating PageRank. Advances in Engineering Software, 120, 88-95. doi:10.1016/j.advengsoft.2016.01.024 | es_ES |
dc.description.references | Agryzkov, T., Oliver, J. L., Tortosa, L., & Vicent, J. F. (2012). An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), 2186-2193. doi:10.1016/j.amc.2012.08.064 | es_ES |
dc.description.references | Agryzkov, T., Tortosa, L., & Vicent, J. F. (2016). New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Applied Mathematics and Computation, 291, 14-29. doi:10.1016/j.amc.2016.06.036 | es_ES |
dc.description.references | Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444 | es_ES |
dc.description.references | Conti, M., & Kumar, M. (2010). Opportunities in Opportunistic Computing. Computer, 43(1), 42-50. doi:10.1109/mc.2010.19 | es_ES |
dc.description.references | Zhang, Y., Song, L., Jiang, C., Tran, N. H., Dawy, Z., & Han, Z. (2017). A Social-Aware Framework for Efficient Information Dissemination in Wireless Ad Hoc Networks. IEEE Communications Magazine, 55(1), 174-179. doi:10.1109/mcom.2017.1600029cm | es_ES |
dc.description.references | Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001 | es_ES |
dc.description.references | Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 | es_ES |
dc.description.references | Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 | es_ES |
dc.description.references | Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research, 33(4), 452-473. doi:10.1086/jar.33.4.3629752 | es_ES |