- -

Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agryzkov, Taras es_ES
dc.contributor.author Pedroche Sánchez, Francisco es_ES
dc.contributor.author Tortosa, Leandro es_ES
dc.contributor.author Vicent, José F. es_ES
dc.date.accessioned 2020-06-06T03:32:17Z
dc.date.available 2020-06-06T03:32:17Z
dc.date.issued 2018-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145538
dc.description.abstract [EN] Identifying the influential nodes in complex networks is a fundamental and practical topic at the moment. In this paper, a new centrality measure for complex networks is proposed based on two contrasting models that have their common origin in the well-known PageRank centrality. On the one hand, the essence of the model proposed is taken from the Adapted PageRank Algorithm (APA) centrality, whose main characteristic is that constitutes a measure to establish a ranking of nodes considering the importance of some dataset associated to the network. On the other hand, a technique known as two-layers PageRank approach is applied to this model. This technique focuses on the idea that the PageRank centrality can be understood as a two-layer network, the topological and teleportation layers, respectively. The main point of the proposed centrality is that it combines the APA centrality with the idea of two-layers; however, the difference now is that the teleportation layer is replaced by a layer that collects the data present in the network. This combination gives rise to a new algorithm for ranking the nodes according to their importance. Subsequently, the coherence of the new measure is demonstrated by calculating the correlation and the quantitative differences of both centralities (APA and the new centrality). A detailed study of the differences of both centralities, taking different types of networks, is performed. A real urban network with data randomly generated is evaluated as well as the well-known Zachary's karate club network. Some numerical results are carried out by varying the values of the alpha parameter-known as dumping factor in PageRank model-that varies the importance given to the two layers (topology and data) within the computation of the new centrality. The proposed algorithm takes the best characteristics of the models on which it is based: on the one hand, it is a measure of centrality, in complex networks with data, whose calculation is stable numerically and, on the other hand, it is able to separate the topological properties of the network and the influence of the data. es_ES
dc.description.sponsorship Partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof ISPRS International Journal of Geo-Information es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Networks centrality es_ES
dc.subject Adapted PageRank Algorithm es_ES
dc.subject PageRank es_ES
dc.subject Two-layers PageRank es_ES
dc.subject Spectral theory es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijgi7120480 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P/ES/ANALISIS Y VISUALIZACION DE LA CIUDAD COMO UNA RED MULTIPLE DE DATOS Y SU IMPLICACION EN EL TURISMO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Agryzkov, T.; Pedroche Sánchez, F.; Tortosa, L.; Vicent, JF. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information. 7(12):1-22. https://doi.org/10.3390/ijgi7120480 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijgi7120480 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2220-9964 es_ES
dc.relation.pasarela S\374257 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3). doi:10.1103/physreve.73.036125 es_ES
dc.description.references Bonacich, P. (1991). Simultaneous group and individual centralities. Social Networks, 13(2), 155-168. doi:10.1016/0378-8733(91)90018-o es_ES
dc.description.references Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1-37. doi:10.1016/0378-8733(89)90016-6 es_ES
dc.description.references Szell, M., Lambiotte, R., & Thurner, S. (2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636-13641. doi:10.1073/pnas.1004008107 es_ES
dc.description.references Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141-151. doi:10.1109/tits.2010.2074196 es_ES
dc.description.references Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), 1777-1787. doi:10.1016/j.physa.2011.09.017 es_ES
dc.description.references Zhou, Y.-B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New Journal of Physics, 14(3), 033033. doi:10.1088/1367-2630/14/3/033033 es_ES
dc.description.references Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A dual approach. Physica A: Statistical Mechanics and its Applications, 369(2), 853-866. doi:10.1016/j.physa.2005.12.063 es_ES
dc.description.references Jiang, B. (2009). Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science, 23(7), 823-837. doi:10.1080/13658810802022822 es_ES
dc.description.references Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631 es_ES
dc.description.references Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686 es_ES
dc.description.references Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543 es_ES
dc.description.references Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of Mathematical Sociology, 25(2), 163-177. doi:10.1080/0022250x.2001.9990249 es_ES
dc.description.references Haveliwala, T. H. (2003). Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4), 784-796. doi:10.1109/tkde.2003.1208999 es_ES
dc.description.references Berkhin, P. (2005). A Survey on PageRank Computing. Internet Mathematics, 2(1), 73-120. doi:10.1080/15427951.2005.10129098 es_ES
dc.description.references García, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051 es_ES
dc.description.references Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091 es_ES
dc.description.references Bianchini, M., Gori, M., & Scarselli, F. (2005). Inside PageRank. ACM Transactions on Internet Technology, 5(1), 92-128. doi:10.1145/1052934.1052938 es_ES
dc.description.references Migallón, H., Migallón, V., Palomino, J. A., & Penadés, J. (2018). A heuristic relaxed extrapolated algorithm for accelerating PageRank. Advances in Engineering Software, 120, 88-95. doi:10.1016/j.advengsoft.2016.01.024 es_ES
dc.description.references Agryzkov, T., Oliver, J. L., Tortosa, L., & Vicent, J. F. (2012). An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), 2186-2193. doi:10.1016/j.amc.2012.08.064 es_ES
dc.description.references Agryzkov, T., Tortosa, L., & Vicent, J. F. (2016). New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Applied Mathematics and Computation, 291, 14-29. doi:10.1016/j.amc.2016.06.036 es_ES
dc.description.references Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444 es_ES
dc.description.references Conti, M., & Kumar, M. (2010). Opportunities in Opportunistic Computing. Computer, 43(1), 42-50. doi:10.1109/mc.2010.19 es_ES
dc.description.references Zhang, Y., Song, L., Jiang, C., Tran, N. H., Dawy, Z., & Han, Z. (2017). A Social-Aware Framework for Efficient Information Dissemination in Wireless Ad Hoc Networks. IEEE Communications Magazine, 55(1), 174-179. doi:10.1109/mcom.2017.1600029cm es_ES
dc.description.references Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001 es_ES
dc.description.references Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 es_ES
dc.description.references Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 es_ES
dc.description.references Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research, 33(4), 452-473. doi:10.1086/jar.33.4.3629752 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem