- -

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Seco Torrecillas, Aurora es_ES
dc.contributor.author Aparicio Antón, Stéphanie Elena es_ES
dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author Jiménez Benítez, Antonio Luis es_ES
dc.contributor.author Mateo-Llosa, Oscar es_ES
dc.contributor.author Mora-Sánchez, Juan Francisco es_ES
dc.contributor.author Noriega-Hevia, Guillermo es_ES
dc.contributor.author Sanchis-Perucho, Pau es_ES
dc.contributor.author Serna-García, Rebecca es_ES
dc.contributor.author Zamorano-López, Núria es_ES
dc.contributor.author Giménez García, J.B. es_ES
dc.contributor.author Ruiz Martinez, Ana es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.contributor.author Barat, Ramón es_ES
dc.contributor.author Borrás Falomir, Luis es_ES
dc.contributor.author Bouzas Blanco, Alberto es_ES
dc.contributor.author Martí Ortega, Nuria es_ES
dc.contributor.author Paches Giner, Maria Aguas Vivas es_ES
dc.contributor.author Ribes Bertomeu, José es_ES
dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Ruano García, María Victoria es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.contributor.author Ferrer, J. es_ES
dc.date.accessioned 2020-06-06T03:32:19Z
dc.date.available 2020-06-06T03:32:19Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 0273-1223 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145539
dc.description.abstract [EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH 4.kg(-1) CODinf ) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m 3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 +/- 77 mg N.L-1 and 121.0 +/- 7.2 mg P.L-1). es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. This research was also supported by the Spanish Ministry of Education, Culture and Sport via two pre-doctoral FPU fellowships (FPU14/05082 and FPU15/02595) and by the Spanish Ministry of Economy and Competitiveness via two pre-doctoral FPI fellowships (BES-2015-071884, BES-2015-073403) and one Juan de la Cierva contract (FJCI-2014-21616). The authors would also like to acknowledge the support received from Generalitat Valenciana via two VALithornd post-doctoral grants (APOSTD/2014/049 and APOSTD/2016/104) and via the fellowships APOTI/2016/059 and CPI-16-155, as well as the financial aid received from the European Climate KIC association for the 'MAB 2.0' Project (APIN0057_ 2015-3.6-230_ P066-05) and Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the seventh author. es_ES
dc.language Inglés es_ES
dc.publisher IWA Publishing es_ES
dc.relation.ispartof Water Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anaerobic digestion (AD) es_ES
dc.subject Anaerobic membrane bioreactor (AnMBR) es_ES
dc.subject Membrane photobioreactor (MPBR) es_ES
dc.subject Resource recovery es_ES
dc.subject Sewage es_ES
dc.subject Water resource recovery facility (WRRF) es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2166/wst.2018.492 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F104/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F02595/ES/FPU15%2F02595/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-071884/ES/BES-2015-071884/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2014-21616/ES/FJCI-2014-21616/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-073403/ES/BES-2015-073403/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOTIP%2F2016%2F059/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Seco Torrecillas, A.; Aparicio Antón, SE.; Gonzalez-Camejo, J.; Jiménez Benítez, AL.; Mateo-Llosa, O.; Mora-Sánchez, JF.; Noriega-Hevia, G.... (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science & Technology. 78(9):1925-1936. https://doi.org/10.2166/wst.2018.492 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2166/wst.2018.492 es_ES
dc.description.upvformatpinicio 1925 es_ES
dc.description.upvformatpfin 1936 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 30566096 es_ES
dc.relation.pasarela S\374286 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder EIT Climate-KIC es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Bair, R. A., Ozcan, O. O., Calabria, J. L., Dick, G. H., & Yeh, D. H. (2015). Feasibility of anaerobic membrane bioreactors (AnMBR) for onsite sanitation and resource recovery (nutrients, energy and water) in urban slums. Water Science and Technology, 72(9), 1543-1551. doi:10.2166/wst.2015.349 es_ES
dc.description.references Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004 es_ES
dc.description.references Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021 es_ES
dc.description.references Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. doi:10.1016/j.biotechadv.2014.07.008 es_ES
dc.description.references Carrington E.-G. 2001 Evaluation of Sludge Treatments for Pathogen Reduction. http://europa.eu.int/comm/environment/pubs/home.htm. es_ES
dc.description.references Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037 es_ES
dc.description.references De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439-445. doi:10.1016/j.jbiotec.2007.01.009 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Giménez, J. B., Bouzas, A., Carrere, H., Steyer, J.-P., Ferrer, J., & Seco, A. (2018). Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand. Bioresource Technology, 269, 188-194. doi:10.1016/j.biortech.2018.08.052 es_ES
dc.description.references González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 es_ES
dc.description.references Martí, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074 es_ES
dc.description.references Moosbrugger R. , WentzelM. & EkamaG.1992Simple Titration Procedures to Determine H2CO3 Alkalinity and Short-chain Fatty Acids in Aqueous Solutions Containing Known Concentrations of Ammonium, Phosphate and Sulphide Weak Acid/Bases. Water. Res. Commission, Report, No. TT 57/92. es_ES
dc.description.references Morales, N., Boehler, M., Buettner, S., Liebi, C., & Siegrist, H. (2013). Recovery of N and P from Urine by Struvite Precipitation Followed by Combined Stripping with Digester Sludge Liquid at Full Scale. Water, 5(3), 1262-1278. doi:10.3390/w5031262 es_ES
dc.description.references Pretel, R., Durán, F., Robles, A., Ruano, M. V., Ribes, J., Serralta, J., & Ferrer, J. (2015). Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion. Separation and Purification Technology, 156, 132-139. doi:10.1016/j.seppur.2015.09.047 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45-54. doi:10.1016/j.jenvman.2015.10.004 es_ES
dc.description.references Sharma, B., Sarkar, A., Singh, P., & Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. doi:10.1016/j.wasman.2017.03.002 es_ES
dc.description.references Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416. doi:10.1016/j.biotechadv.2009.03.001 es_ES
dc.description.references Sid, S., Volant, A., Lesage, G., & Heran, M. (2017). Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production. Water Science and Technology, 76(9), 2473-2481. doi:10.2166/wst.2017.423 es_ES
dc.description.references Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., … Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447-454. doi:10.1016/j.biortech.2016.06.116 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem